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NAS RK is pleased to announce that News of NAS RK. Series of geology and technical 
sciences scientific journal has been accepted for indexing in the Emerging Sources Citation 
Index, a new edition of Web of Science. Content in this index is under consideration by 
Clarivate Analytics to be accepted in the Science Citation Index Expanded, the Social 
Sciences Citation Index, and the Arts & Humanities Citation Index. The quality and depth 
of content Web of Science offers to researchers, authors, publishers, and institutions sets it 
apart from other research databases. The inclusion of News of NAS RK. Series of geology 
and technical sciences in the Emerging Sources Citation Index demonstrates our dedication 
to providing the most relevant and influential content of geology and engineering sciences 
to our community.

Қазақстан Республикасы Ұлттық ғылым академиясы «ҚР ҰҒА Хабарлары. Геология 
және техникалық ғылымдар сериясы» ғылыми журналының Web of Science-тің 
жаңаланған нұсқасы Emerging Sources Citation Index-те индекстелуге қабылданғанын 
хабарлайды. Бұл индекстелу барысында Clarivate Analytics компаниясы журналды 
одан әрі the Science Citation Index Expanded, the Social Sciences Citation Index және the 
Arts & Humanities Citation Index-ке қабылдау мәселесін қарастыруда. Webof Science 
зерттеушілер, авторлар, баспашылар мен мекемелерге контент тереңдігі мен 
сапасын ұсынады. ҚР ҰҒА Хабарлары. Геология және техникалық ғылымдар сериясы 
Emerging Sources Citation Index-ке енуі біздің қоғамдастық үшін ең өзекті және 
беделді геология және техникалық ғылымдар бойынша контентке адалдығымызды 
білдіреді.

НАН РК сообщает, что научный журнал «Известия НАН РК. Серия геологии и 
технических наук» был принят для индексирования в Emerging Sources Citation Index, 
обновленной версии Web of Science. Содержание в этом индексировании находится 
в стадии рассмотрения компанией Clarivate Analytics для дальнейшего принятия 
журнала в the Science Citation Index Expanded, the Social Sciences Citation Index и 
the Arts & Humanities Citation Index. Web of Science предлагает качество и глубину 
контента для исследователей, авторов, издателей и учреждений. Включение 
Известия НАН РК. Серия геологии и технических наук в Emerging Sources Citation 
Index демонстрирует нашу приверженность к наиболее актуальному и влиятельному 
контенту по геологии и техническим наукам для нашего сообщества.
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для одного термодинамического направлении - критической изотермы Тк=300,6К. 
На рис. 5а представлена концентрационная зависимость флуктуационной части 

вязкости 

Рис. 3б. Зависимость обратного значения флуктуационной части вязкости от концентрации на границе раздела фаз

Как видно из рис. 3б, при приближении к критической концентрации (∆с→0) и критической 
температуре (t→0) обратная величина 1( 0, 0)f c t−  → → стремится к постоянному значению

( )1 10, 0 /f f кc t q C− − → → = =  (1). Этот результат свидетельствует о том, что вязкость
раствора в критическом состоянии является конечной величиной. (Мартынов, 2018: 360),
(Ландау, 2002: 541)

Для количественного анализа поведения флуктуационной части вязкости на границе раздела фаз
была исследована концентрационная зависимость разности величин

1 1 1 1 /f f fê f q C− − − − = − = −    . В дальнейшем эта разность описывалась степенным

соотношением в соответствии с скейлинговыми представлениями (Стенли, 1982:353) о поведении
флуктуационной части вязкости ( )f c в близкой окрестности КТ в виде:
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Для нахождения величины этого показателя n1 в двойном логарифмическом масштабе была
построена зависимость (2). Эти данные показаны на рис. 4.
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Рис. 4. Логарифм обратного значения флуктуационной части вязкости на границе раздела фаз

На основе этих данных было получено, что величина показателя для границы раздела фаз n1 в
формуле (2) равна n11,9.
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границы раздела фаз.

Результаты и обсуждение. Полученные результаты подтверждают вид флуктуационной части 
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Наряду с представленной выше информацией о поведении флуктуационной части вязкости для 
кривой сосуществования, на основе проведенных экспериментальных исследований (рис. 1)
аналогичный анализ был проведен еще для одного термодинамического направлении - критической
изотермы Тк=300,6К. На рис. 5а представлена концентрационная зависимость флуктуационной части
вязкости ( )f кc c c = −  для различных массовых концентраций вдоль термодинамического
направления критической изотермы Т=Тк.
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Анализ этих данных (рис. 5а) проводился аналогично представленному выше анализу данных
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Из рис. 5б, как и раньше (рис. 3б) следует, что вдоль направления критической изотермы при
концентрации ( )0 kc c c → → величина 1

f к
− принимает конечное значение 

( )1 10 /f f кt q C− −= = =  . Для количественного анализа поведения флуктуационной части

вязкости ( )f c (рис. 5) были построены в двойном логарифмическом масштабе обратные значения 
флуктуационной части вязкости на критической изотерме (рис. 6)
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Abstract. The article studies the stability of workings of circular cross-sectional 
profile drifts and crosshairs in inclined layered rock massif. The intact rock massif 
is represented by a continuous elastic homogeneous transversal-isotropic medium 
with an inclined plane of isotropy coinciding with the layer-rock layering plane. 
The initial elastic stress and strain states of the excavation are determined by the 
corresponding anisotropic body theory equations for flat (drift) and generalized 
flat (crosshair) deformations, that is, by the generalized Hooke’s law equations. 
Calculations of the initial stability of unanchored mine workings in a sloping 
layered massif, performed on its anisotropic model, showed that the effect of the 
slope of the layers and the location of the mine workings relative to their strike is 
clearly established in the initial elastic stage of deformation of the massif around 
the mine workings. The crosshair is under relatively favorable conditions not 
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only at medium angles φ, but also at steep bedding of rocks. In a rock massif with 
vertical layers, the stresses around the crosshair will be the same as in an isotropic 
massif. The data of multivariate numerical experiments show that, at any angle 
of incidence, the initial elastic stability conditions are relatively favorable for the 
crosshair than for the drift. A detailed analysis of the numerical results indicates 
sufficient completeness of the assumptions of this study and the validity of its 
results as a theoretical basis for solving various problems of rock pressure when 
driving horizontal mine workings, the longitudinal axes of which are arbitrarily 
oriented in a slant-layered array of rocks.

Keywords: rock massif, rock pressure, angle of incidence of layers, stability, 
crosshair, drift, anisotropy.
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Аннотация. Мақалада тау жыныстарының көлбеу-қатпарлы массивінде 
өткен дөңгелек көлденең профильдегі штректер мен квершлагтар 
түріндегі қазбалардың тұрақтылығы зерттелген. Қол жетімсіз тау массиві 
жыныстардың қабаттасу қабаттарымен сәйкес келетін изотропияның көлбеу 
жазықтығымен тұтас серпімді біртекті трансверсальды-изотропты ортамен 
ұсынылған. Бастапқы серпімді кернеулі және деформацияланған күй 
жазық (штрек) және жалпыланған жазық (квершлаг) деформациялар үшін 
анизотропты дене теориясының тиісті теңдеулерімен, яғни Гук заңының 
жалпыланған теңдеулерімен анықталады. Оның анизотропты моделінде 
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жасалған көлбеу қабатты массивтегі бекітілмеген тау-кен қазбаларының 
бастапқы тұрақтылығын есептеу қабаттардың көлбеу әсері мен олардың 
созылуына қатысты қазбаның орналасуы қазбаның айналасындағы массивті 
деформациялаудың бастапқы серпімді кезеңінде нақты белгіленетінін 
көрсетті. Квершлаг салыстырмалы түрде әрқашанда қолайлы жағдайда, φ 
орташа бұрыштарында ғана емес, сонымен қатар тау жыныстарының тік 
орналасуында да болады. Тік қабаттары бар тау массивінде квершлагтың 
айналасындағы кернеулер изотропты массивпен бірдей болады. Көп нұсқалы 
сандық эксперименттердің мәліметтері тау жыныстарының құлауының кез-
келген бұрышында бастапқы серпімді тұрақтылық жағдайлары штрекке 
қарағанда квершлаг үшін салыстырмалы түрде қолайлы екенін көрсетеді. 
Сандық  нәтижелерді егжей-тегжейлі талдау осы зерттеудің алғышарттарының 
жеткілікті толықтығын және оның нәтижелерінің сенімділігін көлденең 
тау-кен қазбаларын қазу кезіндегі тау қысымының әр түрлі мәселелерін 
шешудің теориялық негізі ретінде көрсетеді, олардың бойлық осьтері тау 
жыныстарының көлбеу-қабатты массивінде еркін бағытталған.

Түйін сөздер: тау массиві, тау қысымы, қабаттардың құлау бұрышы, 
тұрақтылық, квершлаг, штрек, анизотропия.
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Аннотация. В статье изучена устойчивость выработок типа штреков 
и квершлагов круглого поперечного профиля, пройденных в наклонно-
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слоистом массиве горных пород. Нетронутый горный массив представлен 
сплошной упругой однородной трансверсально-изотропной средой с 
наклонной плоскостью изотропии, совпадающей с плоскостью слоев – 
напластования пород. Начальное упругое напряженное и деформированное 
состояния выработки определены соответствующими уравнениями 
теории анизотропного тела для плоской (штрек) и обобщенной плоской 
(квершлаг) деформаций, т.е. обобщенными уравнениями закона Гука. 
Расчеты начальной устойчивости незакрепленных горных выработок в 
наклонно-слоистом массиве, выполненные на ее анизотропной модели, 
показали, что эффект влияния наклона слоев и расположения выработки 
относительно их простирания четко устанавливается в начальной упругой 
стадии деформирования массива вокруг выработки. Квершлаг находится в 
сравнительно благоприятных условиях не только при средних углах φ, но 
и при крутом залегании пород. В горном массиве с вертикальными слоями 
напряжения вокруг квершлага будут такими же, как и в изотропном массиве. 
Изложенные данные многовариантных численных экспериментов показывают, 
что при любом угле падения пород условия начальной упругой устойчивости 
сравнительно благоприятны для квершлага, нежели для штрека. Детальный 
анализ численных результатов свидетельствует о достаточной полноте 
предпосылок данного исследования и достоверности его результатов как 
теоретической основы решения разнообразных вопросов горного давления 
при проходке горизонтальных горных выработок, продольные оси которых 
произвольно ориентированы в наклонно-слоистом массиве горных пород.

Ключевые слова: горный массив, горное давление, угол падения слоев, 
устойчивость, квершлаг, штрек, анизотропия.

Introduction. Development of minerals is usually accompanied by sinking and 
anchoring of horizontal underground excavations, crossing the layered-forming 
strata of sedimentary rocks in different directions. These excavations, depending on 
the orientation of longitudinal axes relative to the strike of rock layers, are divided 
into drifts and crosshairs, located along the strike and along the strike of rocks. The 
intermediate position is occupied by relatively rare diagonal excavations, whose 
axes form an acute angle with the line of strike of the layers - rock stratification 
surfaces.

The manifestation of rock pressure in the drifts and crosshairs, displacements 
of rocks and their pressure on the support are largely predetermined by the slope 
of rock layering surfaces. This is confirmed by field observations. However, 
until now there has been no sufficiently complete analysis and calculation of 
such phenomena, characterizing the specifics of the mechanism of stability and 
work of shields of drifts and crosshairs, as well as diagonal mine workings. The 
existing calculation schemes of mine workings represent the real rock mass as a 
mechanically homogeneous medium (isotropic or anisotropic) simulating horizontal 
layering. They sufficiently reflect the main physical and kinematic features of rock 
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behavior and their interaction with underground structures, do not allow to assess 
the influence of the spatial position of rock layering surfaces on the rock pressure.

The expediency of taking into account the elastic anisotropy of rocks around 
workings was first noted by G.N. Savin, who obtained expressions for the coefficient 
of lateral pressure (Savin, 2014). S.G. Lekhnitsky solved the problem about the 
stress state of a heavy elastic transversal-isotropic massif with a horizontal isotropic 
plane, weakened by a mine shaft (Lekhnitsky, 2013).

The influence of elastic anisotropy of rocks on the stress state around adits was 
considered by G. Sonntag in an approximate way (Sonntag, 2013; Sonntag, 2013). 
In their works H. Werner and P. Felix touched upon the issues of estimation of 
layering and elastic anisotropy of rocks (Werner, 2015; Felix, 2013).

There are very few data on the full set of elastic characteristics of rocks as 
a transversal-isotropic body. The main reason is the lack of experimental data 
on the shear modulus G2, which was pointed out by A.S. Kosmadamiansky 
(Kosmodamiansky, 2013). Researchers K. Wolf and H.A. Lang determined the 
shear modulus G2 not from experiment, but by very arbitrary calculations (Wolf, 
2016; Lang, 2014).

Material and basic methods. The stress-strain state of horizontal mine workings 
such as drifts and crosshairs, in addition to different orientations, is predetermined 
by the slope of folded rock layers. Let us define the basic physical equations of the 
anisotropic (transtropic) model of the rock massif, not weakened by the conduct 
of underground construction. Let’s introduce a rectangular Cartesian coordinate 
system Oxyz (see Figure 1a, b), where Oz axis is directed vertically upwards, 
horizontal axes Oy and Ox coincide with the lines along and across the strike of the 
isotropic plane, respectively. Let us denote the angle of inclination of the isotropy 
plane to the horizontal plane by ϕ. Then the equations of the generalized Hooke’s 
law for a transtropic massif with the isotropy plane inclined at angle ϕ in the chosen 
coordinate system Oxyz have the form:

расположения выработки относительно их простирания четко устанавливается в начальной упругой 
стадии деформирования массива вокруг выработки. 

Квершлаг находится в сравнительно благоприятных условиях не только при средних углах φ, но 
и при крутом залегании пород. В горном массиве с вертикальными слоями напряжения вокруг 
квершлага будут такими же, как и в изотропном массиве. Изложенные данные многовариантных 
численных экспериментов показывают, что при любом угле падения пород условия начальной 
упругой устойчивости сравнительно благоприятны для квершлага, нежели для штрека. 

Детальный анализ численных результатов свидетельствует о достаточной полноте предпосылок 
данного исследования и достоверности его результатов как теоретической основы решения 
разнообразных вопросов горного давления при проходке горизонтальных горных выработок, 
продольные оси которых произвольно ориентированы в наклонно-слоистом массиве горных пород. 

Ключевые слова: горный массив, горное давление, угол падения слоев, устойчивость, 
квершлаг, штрек, анизотропия. 

 
Introduction. Development of minerals is usually accompanied by sinking and anchoring of 

horizontal underground excavations, crossing the layered-forming strata of sedimentary rocks in 
different directions. These excavations, depending on the orientation of longitudinal axes relative to 
the strike of rock layers, are divided into drifts and crosshairs, located along the strike and along the 
strike of rocks. The intermediate position is occupied by relatively rare diagonal excavations, whose 
axes form an acute angle with the line of strike of the layers - rock stratification surfaces. 

The manifestation of rock pressure in the drifts and crosshairs, displacements of rocks and their 
pressure on the support are largely predetermined by the slope of rock layering surfaces. This is 
confirmed by field observations. However, until now there has been no sufficiently complete 
analysis and calculation of such phenomena, characterizing the specifics of the mechanism of 
stability and work of shields of drifts and crosshairs, as well as diagonal mine workings. The 
existing calculation schemes of mine workings represent the real rock mass as a mechanically 
homogeneous medium (isotropic or anisotropic) simulating horizontal layering. They sufficiently 
reflect the main physical and kinematic features of rock behavior and their interaction with 
underground structures, do not allow to assess the influence of the spatial position of rock layering 
surfaces on the rock pressure. 

The expediency of taking into account the elastic anisotropy of rocks around workings was 
first noted by G.N. Savin, who obtained expressions for the coefficient of lateral pressure (Savin, 
2014). S.G. Lekhnitsky solved the problem about the stress state of a heavy elastic transversal-
isotropic massif with a horizontal isotropic plane, weakened by a mine shaft (Lekhnitsky, 2013). 

The influence of elastic anisotropy of rocks on the stress state around adits was considered by 
G. Sonntag in an approximate way (Sonntag, 2013; Sonntag, 2013). In their works H. Werner and 
P. Felix touched upon the issues of estimation of layering and elastic anisotropy of rocks (Werner, 
2015; Felix, 2013). 

There are very few data on the full set of elastic characteristics of rocks as a transversal-
isotropic body. The main reason is the lack of experimental data on the shear modulus G2, which 
was pointed out by A.S. Kosmadamiansky (Kosmodamiansky, 2013). Researchers K. Wolf and 
H.A. Lang determined the shear modulus G2 not from experiment, but by very arbitrary calculations 
(Wolf, 2016; Lang, 2014). 

Material and basic methods. The stress-strain state of horizontal mine workings such as drifts 
and crosshairs, in addition to different orientations, is predetermined by the slope of folded rock 
layers. Let us define the basic physical equations of the anisotropic (transtropic) model of the rock 
massif, not weakened by the conduct of underground construction. Let's introduce a rectangular 
Cartesian coordinate system Oxyz (see Figure 1a, b), where Oz axis is directed vertically upwards, 
horizontal axes Oy and Ox coincide with the lines along and across the strike of the isotropic plane, 
respectively. Let us denote the angle of inclination of the isotropy plane to the horizontal plane by 
. Then the equations of the generalized Hooke's law for a transtropic massif with the isotropy 
plane inclined at angle  in the chosen coordinate system Oxyz have the form: 
            𝜀𝜀𝑥𝑥 = 𝑎𝑎11𝜎𝜎𝑥𝑥 + 𝑎𝑎12𝜎𝜎𝑦𝑦 + 𝑎𝑎13𝜎𝜎𝑧𝑧 + 𝑎𝑎15𝜏𝜏xz,              𝜀𝜀𝑦𝑦 = 𝑎𝑎12𝜎𝜎𝑥𝑥 + 𝑎𝑎22𝜎𝜎𝑦𝑦 + 𝑎𝑎23𝜎𝜎𝑧𝑧 + 𝑎𝑎25𝜏𝜏xz, 

      𝜀𝜀𝑧𝑧 = 𝑎𝑎13𝜎𝜎𝑥𝑥 + 𝑎𝑎23𝜎𝜎𝑦𝑦 + 𝑎𝑎33𝜎𝜎𝑧𝑧 + 𝑎𝑎35𝜏𝜏xz,           𝛾𝛾yz = 𝑎𝑎44 𝜏𝜏yz + 𝑎𝑎46 𝜏𝜏xy                                (1) 
           𝛾𝛾xy = 𝑎𝑎46𝜏𝜏yz + 𝑎𝑎66𝜏𝜏xy,                                      𝛾𝛾xz = 𝑎𝑎15𝜎𝜎𝑥𝑥 + 𝑎𝑎25𝜎𝜎𝑦𝑦 + 𝑎𝑎35𝜎𝜎𝑧𝑧 + 𝑎𝑎55𝜏𝜏xz 

 
 

а– general scheme; b - cross-section across the isotropic plane 
Fig. 1 - Sloped-layered rock massif 

             
where the strain coefficients 𝑎𝑎ij (𝑖𝑖, 𝑗𝑗 = 1 − 6) are equal: 

    𝑎𝑎11 = 𝐸𝐸1
−1cos4𝜙𝜙 + 0.25(𝐺𝐺2

−1 − 2𝜈𝜈2𝐸𝐸1
−1) sin22𝜙𝜙 + 𝐸𝐸2

−1sin4𝜙𝜙,    𝑎𝑎22 = 𝐸𝐸1
−1, 

    𝑎𝑎33 = 𝐸𝐸1
−1sin4𝜙𝜙 + 0.25(𝐺𝐺2

−1 − 2 𝜈𝜈2𝐸𝐸1
−1) sin22𝜙𝜙 + 𝐸𝐸2

−1cos4𝜙𝜙, 
    𝑎𝑎44 = 2 𝐸𝐸1

−1(1 + 𝜈𝜈1) sin2𝜙𝜙 + 𝐺𝐺2
−2cos2𝜙𝜙, 𝑎𝑎55 = 𝐺𝐺2

−1 + (𝐸𝐸1
−1(1 + 2 𝜈𝜈2) + 𝐸𝐸2

−1 − 𝐺𝐺2
−1) sin22𝜙𝜙, 

             𝑎𝑎66 = 2 𝐸𝐸1
−1(1 + 𝜈𝜈1) cos2𝜙𝜙 + 𝐺𝐺2

−1sin2𝜙𝜙, 𝑎𝑎12 = −𝐸𝐸1
−1𝜈𝜈1cos2𝜙𝜙 + 𝐺𝐺2

−1𝜈𝜈2 sin2𝜙𝜙,                               
             𝑎𝑎13 = −𝐸𝐸1

−1𝜈𝜈2 + 0.25(𝐸𝐸1
−1(1 + 2 𝜈𝜈2) + 𝐸𝐸2

−1 − 𝐺𝐺2
−1) sin22𝜙𝜙,                                              (2) 

             𝑎𝑎15 = [𝐸𝐸1
−1(1 + 𝜈𝜈2) cos2𝜙𝜙 − (𝐸𝐸2

−1 + 𝐸𝐸1
−1𝜈𝜈2) sin2𝜙𝜙 − 0.5 𝐺𝐺2

−1cos2𝜙𝜙] sin2𝜙𝜙, 
             𝑎𝑎23 = −𝐸𝐸1

−1𝜈𝜈1sin2𝜙𝜙 − 𝐸𝐸1
−1𝜈𝜈2cos2𝜙𝜙, 𝑎𝑎25 = −𝐸𝐸1

−1(𝜈𝜈1 − 𝜈𝜈2) sin2𝜙𝜙, 
             𝑎𝑎35 = [𝐸𝐸1

−1(1 + 𝜈𝜈2) sin2𝜙𝜙 − (𝐸𝐸2
−1 + 𝐸𝐸1

−1𝜈𝜈2) cos2𝜙𝜙 + 0.5 𝐺𝐺2
−1cos2𝜙𝜙] sin2𝜙𝜙, 

             𝑎𝑎46 = −0.5 (𝐺𝐺2
−1 − 2 𝐸𝐸1

−1(1 + 𝜈𝜈1))  sin2𝜙𝜙, 
and the remaining strain coefficients are zero. 

Here Е1 and Е2- are elastic moduli in the isotropy plane and perpendicular to it; 𝜈𝜈1 and 𝜈𝜈2- 
Poisson's coefficients in the isotropy plane and perpendicular to it during compression-expansion in 
this plane; 𝐺𝐺2- is shear modulus for planes normal to the isotropy plane. The values Е1,Е2, 𝜈𝜈1, 𝜈𝜈2are 
found from uniaxial compression experiments on rock samples parallel and perpendicular to the 
layering. First, the modulus of elasticity Е𝛼𝛼 in compression of the sample at an angle 𝛼𝛼 to the 
layering is determined from the formula: 

𝐸𝐸𝛼𝛼 = (𝐸𝐸1
−1cos4𝜙𝜙 + 0.25 (𝐺𝐺2

−1 − 2 𝐸𝐸1
−1𝜈𝜈2) sin22𝛼𝛼 + 𝐸𝐸2

−1sin4𝛼𝛼) −1,         
and then the shear modulus 𝐺𝐺2by the formula: 

𝐺𝐺2 = sin22𝛼𝛼 [0.25 (𝐸𝐸𝛼𝛼
−1 − 𝐸𝐸1

−1cos4𝛼𝛼 − 𝐸𝐸2
−1sin4𝛼𝛼 + 0.5 𝐸𝐸1

−1𝜈𝜈2 sin22𝛼𝛼)] −1. 
Determination of the stress components in an intact continuous rock massif, from now on 

referred to as the main ones, is hypothetical in nature. A.N. Dinnik's hypothesis about the absence 
of horizontal displacements in an intact thickness under the action of its own weight only, which is 
equivalent to the absence of expansion of the rock massif in the horizontal directions, is widely 
used. Then, taking 𝜎𝜎𝑧𝑧 = −𝛾𝛾𝛾𝛾and using (1), we obtain 

𝜎𝜎𝑥𝑥 = 𝜆𝜆𝑥𝑥 𝜎𝜎𝑧𝑧, 𝜎𝜎𝑦𝑦 = 𝜆𝜆𝑦𝑦 𝜎𝜎𝑧𝑧, 𝜏𝜏𝑥𝑥𝑥𝑥 = 𝜆𝜆𝑥𝑥𝑥𝑥 𝜎𝜎𝑧𝑧, 𝜏𝜏𝑦𝑦𝑦𝑦 = 𝜏𝜏𝑥𝑥𝑥𝑥 = 0. 
Here 𝜆𝜆𝑥𝑥, 𝜆𝜆𝑦𝑦- coefficients of lateral pressure across and along the isotropy plane; 𝛾𝛾, Н- 

volumetric weight of the rock mass and depth of the point in question. At horizontal layering 
(isotropy plane), when 𝜙𝜙 = 0, we have: 

                         𝜆𝜆𝑥𝑥 = 𝜆𝜆𝑦𝑦 = 𝜈𝜈2 (1 − 𝜈𝜈1)−1; 𝜆𝜆𝑥𝑥𝑥𝑥 = 0.                                                (3) 
For an isotropic medium (𝐸𝐸1 = 𝐸𝐸2 = 𝐸𝐸, 𝐺𝐺2 = 𝐺𝐺, 𝜈𝜈1 = 𝜈𝜈2 = 𝜈𝜈) we obtain the well-known A.N. 

Dinnik's coefficient: 

      𝜀𝜀𝑧𝑧 = 𝑎𝑎13𝜎𝜎𝑥𝑥 + 𝑎𝑎23𝜎𝜎𝑦𝑦 + 𝑎𝑎33𝜎𝜎𝑧𝑧 + 𝑎𝑎35𝜏𝜏xz,           𝛾𝛾yz = 𝑎𝑎44 𝜏𝜏yz + 𝑎𝑎46 𝜏𝜏xy                                (1) 
           𝛾𝛾xy = 𝑎𝑎46𝜏𝜏yz + 𝑎𝑎66𝜏𝜏xy,                                      𝛾𝛾xz = 𝑎𝑎15𝜎𝜎𝑥𝑥 + 𝑎𝑎25𝜎𝜎𝑦𝑦 + 𝑎𝑎35𝜎𝜎𝑧𝑧 + 𝑎𝑎55𝜏𝜏xz 

 
 

а– general scheme; b - cross-section across the isotropic plane 
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where the strain coefficients 𝑎𝑎ij (𝑖𝑖, 𝑗𝑗 = 1 − 6) are equal: 

    𝑎𝑎11 = 𝐸𝐸1
−1cos4𝜙𝜙 + 0.25(𝐺𝐺2

−1 − 2𝜈𝜈2𝐸𝐸1
−1) sin22𝜙𝜙 + 𝐸𝐸2

−1sin4𝜙𝜙,    𝑎𝑎22 = 𝐸𝐸1
−1, 

    𝑎𝑎33 = 𝐸𝐸1
−1sin4𝜙𝜙 + 0.25(𝐺𝐺2

−1 − 2 𝜈𝜈2𝐸𝐸1
−1) sin22𝜙𝜙 + 𝐸𝐸2

−1cos4𝜙𝜙, 
    𝑎𝑎44 = 2 𝐸𝐸1

−1(1 + 𝜈𝜈1) sin2𝜙𝜙 + 𝐺𝐺2
−2cos2𝜙𝜙, 𝑎𝑎55 = 𝐺𝐺2

−1 + (𝐸𝐸1
−1(1 + 2 𝜈𝜈2) + 𝐸𝐸2

−1 − 𝐺𝐺2
−1) sin22𝜙𝜙, 

             𝑎𝑎66 = 2 𝐸𝐸1
−1(1 + 𝜈𝜈1) cos2𝜙𝜙 + 𝐺𝐺2

−1sin2𝜙𝜙, 𝑎𝑎12 = −𝐸𝐸1
−1𝜈𝜈1cos2𝜙𝜙 + 𝐺𝐺2

−1𝜈𝜈2 sin2𝜙𝜙,                               
             𝑎𝑎13 = −𝐸𝐸1

−1𝜈𝜈2 + 0.25(𝐸𝐸1
−1(1 + 2 𝜈𝜈2) + 𝐸𝐸2

−1 − 𝐺𝐺2
−1) sin22𝜙𝜙,                                              (2) 

             𝑎𝑎15 = [𝐸𝐸1
−1(1 + 𝜈𝜈2) cos2𝜙𝜙 − (𝐸𝐸2

−1 + 𝐸𝐸1
−1𝜈𝜈2) sin2𝜙𝜙 − 0.5 𝐺𝐺2

−1cos2𝜙𝜙] sin2𝜙𝜙, 
             𝑎𝑎23 = −𝐸𝐸1

−1𝜈𝜈1sin2𝜙𝜙 − 𝐸𝐸1
−1𝜈𝜈2cos2𝜙𝜙, 𝑎𝑎25 = −𝐸𝐸1

−1(𝜈𝜈1 − 𝜈𝜈2) sin2𝜙𝜙, 
             𝑎𝑎35 = [𝐸𝐸1

−1(1 + 𝜈𝜈2) sin2𝜙𝜙 − (𝐸𝐸2
−1 + 𝐸𝐸1

−1𝜈𝜈2) cos2𝜙𝜙 + 0.5 𝐺𝐺2
−1cos2𝜙𝜙] sin2𝜙𝜙, 

             𝑎𝑎46 = −0.5 (𝐺𝐺2
−1 − 2 𝐸𝐸1

−1(1 + 𝜈𝜈1))  sin2𝜙𝜙, 
and the remaining strain coefficients are zero. 

Here Е1 and Е2- are elastic moduli in the isotropy plane and perpendicular to it; 𝜈𝜈1 and 𝜈𝜈2- 
Poisson's coefficients in the isotropy plane and perpendicular to it during compression-expansion in 
this plane; 𝐺𝐺2- is shear modulus for planes normal to the isotropy plane. The values Е1,Е2, 𝜈𝜈1, 𝜈𝜈2are 
found from uniaxial compression experiments on rock samples parallel and perpendicular to the 
layering. First, the modulus of elasticity Е𝛼𝛼 in compression of the sample at an angle 𝛼𝛼 to the 
layering is determined from the formula: 

𝐸𝐸𝛼𝛼 = (𝐸𝐸1
−1cos4𝜙𝜙 + 0.25 (𝐺𝐺2

−1 − 2 𝐸𝐸1
−1𝜈𝜈2) sin22𝛼𝛼 + 𝐸𝐸2

−1sin4𝛼𝛼) −1,         
and then the shear modulus 𝐺𝐺2by the formula: 

𝐺𝐺2 = sin22𝛼𝛼 [0.25 (𝐸𝐸𝛼𝛼
−1 − 𝐸𝐸1

−1cos4𝛼𝛼 − 𝐸𝐸2
−1sin4𝛼𝛼 + 0.5 𝐸𝐸1

−1𝜈𝜈2 sin22𝛼𝛼)] −1. 
Determination of the stress components in an intact continuous rock massif, from now on 

referred to as the main ones, is hypothetical in nature. A.N. Dinnik's hypothesis about the absence 
of horizontal displacements in an intact thickness under the action of its own weight only, which is 
equivalent to the absence of expansion of the rock massif in the horizontal directions, is widely 
used. Then, taking 𝜎𝜎𝑧𝑧 = −𝛾𝛾𝛾𝛾and using (1), we obtain 

𝜎𝜎𝑥𝑥 = 𝜆𝜆𝑥𝑥 𝜎𝜎𝑧𝑧, 𝜎𝜎𝑦𝑦 = 𝜆𝜆𝑦𝑦 𝜎𝜎𝑧𝑧, 𝜏𝜏𝑥𝑥𝑥𝑥 = 𝜆𝜆𝑥𝑥𝑥𝑥 𝜎𝜎𝑧𝑧, 𝜏𝜏𝑦𝑦𝑦𝑦 = 𝜏𝜏𝑥𝑥𝑥𝑥 = 0. 
Here 𝜆𝜆𝑥𝑥, 𝜆𝜆𝑦𝑦- coefficients of lateral pressure across and along the isotropy plane; 𝛾𝛾, Н- 

volumetric weight of the rock mass and depth of the point in question. At horizontal layering 
(isotropy plane), when 𝜙𝜙 = 0, we have: 

                         𝜆𝜆𝑥𝑥 = 𝜆𝜆𝑦𝑦 = 𝜈𝜈2 (1 − 𝜈𝜈1)−1; 𝜆𝜆𝑥𝑥𝑥𝑥 = 0.                                                (3) 
For an isotropic medium (𝐸𝐸1 = 𝐸𝐸2 = 𝐸𝐸, 𝐺𝐺2 = 𝐺𝐺, 𝜈𝜈1 = 𝜈𝜈2 = 𝜈𝜈) we obtain the well-known A.N. 

Dinnik's coefficient: 

      𝜀𝜀𝑧𝑧 = 𝑎𝑎13𝜎𝜎𝑥𝑥 + 𝑎𝑎23𝜎𝜎𝑦𝑦 + 𝑎𝑎33𝜎𝜎𝑧𝑧 + 𝑎𝑎35𝜏𝜏xz,           𝛾𝛾yz = 𝑎𝑎44 𝜏𝜏yz + 𝑎𝑎46 𝜏𝜏xy                                (1) 
           𝛾𝛾xy = 𝑎𝑎46𝜏𝜏yz + 𝑎𝑎66𝜏𝜏xy,                                      𝛾𝛾xz = 𝑎𝑎15𝜎𝜎𝑥𝑥 + 𝑎𝑎25𝜎𝜎𝑦𝑦 + 𝑎𝑎35𝜎𝜎𝑧𝑧 + 𝑎𝑎55𝜏𝜏xz 
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where the strain coefficients 𝑎𝑎ij (𝑖𝑖, 𝑗𝑗 = 1 − 6) are equal: 

    𝑎𝑎11 = 𝐸𝐸1
−1cos4𝜙𝜙 + 0.25(𝐺𝐺2

−1 − 2𝜈𝜈2𝐸𝐸1
−1) sin22𝜙𝜙 + 𝐸𝐸2

−1sin4𝜙𝜙,    𝑎𝑎22 = 𝐸𝐸1
−1, 

    𝑎𝑎33 = 𝐸𝐸1
−1sin4𝜙𝜙 + 0.25(𝐺𝐺2

−1 − 2 𝜈𝜈2𝐸𝐸1
−1) sin22𝜙𝜙 + 𝐸𝐸2

−1cos4𝜙𝜙, 
    𝑎𝑎44 = 2 𝐸𝐸1

−1(1 + 𝜈𝜈1) sin2𝜙𝜙 + 𝐺𝐺2
−2cos2𝜙𝜙, 𝑎𝑎55 = 𝐺𝐺2

−1 + (𝐸𝐸1
−1(1 + 2 𝜈𝜈2) + 𝐸𝐸2

−1 − 𝐺𝐺2
−1) sin22𝜙𝜙, 

             𝑎𝑎66 = 2 𝐸𝐸1
−1(1 + 𝜈𝜈1) cos2𝜙𝜙 + 𝐺𝐺2

−1sin2𝜙𝜙, 𝑎𝑎12 = −𝐸𝐸1
−1𝜈𝜈1cos2𝜙𝜙 + 𝐺𝐺2

−1𝜈𝜈2 sin2𝜙𝜙,                               
             𝑎𝑎13 = −𝐸𝐸1

−1𝜈𝜈2 + 0.25(𝐸𝐸1
−1(1 + 2 𝜈𝜈2) + 𝐸𝐸2

−1 − 𝐺𝐺2
−1) sin22𝜙𝜙,                                              (2) 

             𝑎𝑎15 = [𝐸𝐸1
−1(1 + 𝜈𝜈2) cos2𝜙𝜙 − (𝐸𝐸2

−1 + 𝐸𝐸1
−1𝜈𝜈2) sin2𝜙𝜙 − 0.5 𝐺𝐺2

−1cos2𝜙𝜙] sin2𝜙𝜙, 
             𝑎𝑎23 = −𝐸𝐸1

−1𝜈𝜈1sin2𝜙𝜙 − 𝐸𝐸1
−1𝜈𝜈2cos2𝜙𝜙, 𝑎𝑎25 = −𝐸𝐸1

−1(𝜈𝜈1 − 𝜈𝜈2) sin2𝜙𝜙, 
             𝑎𝑎35 = [𝐸𝐸1

−1(1 + 𝜈𝜈2) sin2𝜙𝜙 − (𝐸𝐸2
−1 + 𝐸𝐸1

−1𝜈𝜈2) cos2𝜙𝜙 + 0.5 𝐺𝐺2
−1cos2𝜙𝜙] sin2𝜙𝜙, 

             𝑎𝑎46 = −0.5 (𝐺𝐺2
−1 − 2 𝐸𝐸1

−1(1 + 𝜈𝜈1))  sin2𝜙𝜙, 
and the remaining strain coefficients are zero. 

Here Е1 and Е2- are elastic moduli in the isotropy plane and perpendicular to it; 𝜈𝜈1 and 𝜈𝜈2- 
Poisson's coefficients in the isotropy plane and perpendicular to it during compression-expansion in 
this plane; 𝐺𝐺2- is shear modulus for planes normal to the isotropy plane. The values Е1,Е2, 𝜈𝜈1, 𝜈𝜈2are 
found from uniaxial compression experiments on rock samples parallel and perpendicular to the 
layering. First, the modulus of elasticity Е𝛼𝛼 in compression of the sample at an angle 𝛼𝛼 to the 
layering is determined from the formula: 

𝐸𝐸𝛼𝛼 = (𝐸𝐸1
−1cos4𝜙𝜙 + 0.25 (𝐺𝐺2

−1 − 2 𝐸𝐸1
−1𝜈𝜈2) sin22𝛼𝛼 + 𝐸𝐸2

−1sin4𝛼𝛼) −1,         
and then the shear modulus 𝐺𝐺2by the formula: 

𝐺𝐺2 = sin22𝛼𝛼 [0.25 (𝐸𝐸𝛼𝛼
−1 − 𝐸𝐸1

−1cos4𝛼𝛼 − 𝐸𝐸2
−1sin4𝛼𝛼 + 0.5 𝐸𝐸1

−1𝜈𝜈2 sin22𝛼𝛼)] −1. 
Determination of the stress components in an intact continuous rock massif, from now on 

referred to as the main ones, is hypothetical in nature. A.N. Dinnik's hypothesis about the absence 
of horizontal displacements in an intact thickness under the action of its own weight only, which is 
equivalent to the absence of expansion of the rock massif in the horizontal directions, is widely 
used. Then, taking 𝜎𝜎𝑧𝑧 = −𝛾𝛾𝛾𝛾and using (1), we obtain 

𝜎𝜎𝑥𝑥 = 𝜆𝜆𝑥𝑥 𝜎𝜎𝑧𝑧, 𝜎𝜎𝑦𝑦 = 𝜆𝜆𝑦𝑦 𝜎𝜎𝑧𝑧, 𝜏𝜏𝑥𝑥𝑥𝑥 = 𝜆𝜆𝑥𝑥𝑥𝑥 𝜎𝜎𝑧𝑧, 𝜏𝜏𝑦𝑦𝑦𝑦 = 𝜏𝜏𝑥𝑥𝑥𝑥 = 0. 
Here 𝜆𝜆𝑥𝑥, 𝜆𝜆𝑦𝑦- coefficients of lateral pressure across and along the isotropy plane; 𝛾𝛾, Н- 

volumetric weight of the rock mass and depth of the point in question. At horizontal layering 
(isotropy plane), when 𝜙𝜙 = 0, we have: 

                         𝜆𝜆𝑥𝑥 = 𝜆𝜆𝑦𝑦 = 𝜈𝜈2 (1 − 𝜈𝜈1)−1; 𝜆𝜆𝑥𝑥𝑥𝑥 = 0.                                                (3) 
For an isotropic medium (𝐸𝐸1 = 𝐸𝐸2 = 𝐸𝐸, 𝐺𝐺2 = 𝐺𝐺, 𝜈𝜈1 = 𝜈𝜈2 = 𝜈𝜈) we obtain the well-known A.N. 

Dinnik's coefficient: 

	        (1)

 
      𝜀𝜀𝑧𝑧 = 𝑎𝑎13𝜎𝜎𝑥𝑥 + 𝑎𝑎23𝜎𝜎𝑦𝑦 + 𝑎𝑎33𝜎𝜎𝑧𝑧 + 𝑎𝑎35𝜏𝜏xz,           𝛾𝛾yz = 𝑎𝑎44 𝜏𝜏yz + 𝑎𝑎46 𝜏𝜏xy                                (1) 

           𝛾𝛾xy = 𝑎𝑎46𝜏𝜏yz + 𝑎𝑎66𝜏𝜏xy,                                      𝛾𝛾xz = 𝑎𝑎15𝜎𝜎𝑥𝑥 + 𝑎𝑎25𝜎𝜎𝑦𝑦 + 𝑎𝑎35𝜎𝜎𝑧𝑧 + 𝑎𝑎55𝜏𝜏xz 
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where the strain coefficients 𝑎𝑎ij (𝑖𝑖, 𝑗𝑗 = 1 − 6) are equal: 

    𝑎𝑎11 = 𝐸𝐸1
−1cos4𝜙𝜙 + 0.25(𝐺𝐺2

−1 − 2𝜈𝜈2𝐸𝐸1
−1) sin22𝜙𝜙 + 𝐸𝐸2

−1sin4𝜙𝜙,    𝑎𝑎22 = 𝐸𝐸1
−1, 

    𝑎𝑎33 = 𝐸𝐸1
−1sin4𝜙𝜙 + 0.25(𝐺𝐺2

−1 − 2 𝜈𝜈2𝐸𝐸1
−1) sin22𝜙𝜙 + 𝐸𝐸2

−1cos4𝜙𝜙, 
    𝑎𝑎44 = 2 𝐸𝐸1

−1(1 + 𝜈𝜈1) sin2𝜙𝜙 + 𝐺𝐺2
−2cos2𝜙𝜙, 𝑎𝑎55 = 𝐺𝐺2

−1 + (𝐸𝐸1
−1(1 + 2 𝜈𝜈2) + 𝐸𝐸2

−1 − 𝐺𝐺2
−1) sin22𝜙𝜙, 

             𝑎𝑎66 = 2 𝐸𝐸1
−1(1 + 𝜈𝜈1) cos2𝜙𝜙 + 𝐺𝐺2

−1sin2𝜙𝜙, 𝑎𝑎12 = −𝐸𝐸1
−1𝜈𝜈1cos2𝜙𝜙 + 𝐺𝐺2

−1𝜈𝜈2 sin2𝜙𝜙,                               
             𝑎𝑎13 = −𝐸𝐸1

−1𝜈𝜈2 + 0.25(𝐸𝐸1
−1(1 + 2 𝜈𝜈2) + 𝐸𝐸2

−1 − 𝐺𝐺2
−1) sin22𝜙𝜙,                                              (2) 

             𝑎𝑎15 = [𝐸𝐸1
−1(1 + 𝜈𝜈2) cos2𝜙𝜙 − (𝐸𝐸2

−1 + 𝐸𝐸1
−1𝜈𝜈2) sin2𝜙𝜙 − 0.5 𝐺𝐺2

−1cos2𝜙𝜙] sin2𝜙𝜙, 
             𝑎𝑎23 = −𝐸𝐸1

−1𝜈𝜈1sin2𝜙𝜙 − 𝐸𝐸1
−1𝜈𝜈2cos2𝜙𝜙, 𝑎𝑎25 = −𝐸𝐸1

−1(𝜈𝜈1 − 𝜈𝜈2) sin2𝜙𝜙, 
             𝑎𝑎35 = [𝐸𝐸1

−1(1 + 𝜈𝜈2) sin2𝜙𝜙 − (𝐸𝐸2
−1 + 𝐸𝐸1

−1𝜈𝜈2) cos2𝜙𝜙 + 0.5 𝐺𝐺2
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             𝑎𝑎46 = −0.5 (𝐺𝐺2
−1 − 2 𝐸𝐸1

−1(1 + 𝜈𝜈1))  sin2𝜙𝜙, 
and the remaining strain coefficients are zero. 

Here Е1 and Е2- are elastic moduli in the isotropy plane and perpendicular to it; 𝜈𝜈1 and 𝜈𝜈2- 
Poisson's coefficients in the isotropy plane and perpendicular to it during compression-expansion in 
this plane; 𝐺𝐺2- is shear modulus for planes normal to the isotropy plane. The values Е1,Е2, 𝜈𝜈1, 𝜈𝜈2are 
found from uniaxial compression experiments on rock samples parallel and perpendicular to the 
layering. First, the modulus of elasticity Е𝛼𝛼 in compression of the sample at an angle 𝛼𝛼 to the 
layering is determined from the formula: 

𝐸𝐸𝛼𝛼 = (𝐸𝐸1
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−1 − 2 𝐸𝐸1
−1𝜈𝜈2) sin22𝛼𝛼 + 𝐸𝐸2
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−1𝜈𝜈2 sin22𝛼𝛼)] −1. 
Determination of the stress components in an intact continuous rock massif, from now on 

referred to as the main ones, is hypothetical in nature. A.N. Dinnik's hypothesis about the absence 
of horizontal displacements in an intact thickness under the action of its own weight only, which is 
equivalent to the absence of expansion of the rock massif in the horizontal directions, is widely 
used. Then, taking 𝜎𝜎𝑧𝑧 = −𝛾𝛾𝛾𝛾and using (1), we obtain 

𝜎𝜎𝑥𝑥 = 𝜆𝜆𝑥𝑥 𝜎𝜎𝑧𝑧, 𝜎𝜎𝑦𝑦 = 𝜆𝜆𝑦𝑦 𝜎𝜎𝑧𝑧, 𝜏𝜏𝑥𝑥𝑥𝑥 = 𝜆𝜆𝑥𝑥𝑥𝑥 𝜎𝜎𝑧𝑧, 𝜏𝜏𝑦𝑦𝑦𝑦 = 𝜏𝜏𝑥𝑥𝑥𝑥 = 0. 
Here 𝜆𝜆𝑥𝑥, 𝜆𝜆𝑦𝑦- coefficients of lateral pressure across and along the isotropy plane; 𝛾𝛾, Н- 

volumetric weight of the rock mass and depth of the point in question. At horizontal layering 
(isotropy plane), when 𝜙𝜙 = 0, we have: 

                         𝜆𝜆𝑥𝑥 = 𝜆𝜆𝑦𝑦 = 𝜈𝜈2 (1 − 𝜈𝜈1)−1; 𝜆𝜆𝑥𝑥𝑥𝑥 = 0.                                                (3) 
For an isotropic medium (𝐸𝐸1 = 𝐸𝐸2 = 𝐸𝐸, 𝐺𝐺2 = 𝐺𝐺, 𝜈𝜈1 = 𝜈𝜈2 = 𝜈𝜈) we obtain the well-known A.N. 

Dinnik's coefficient: 

а– general scheme; b - cross-section across the isotropic plane
Fig. 1 - Sloped-layered rock massif
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where the strain coefficients 

      𝜀𝜀𝑧𝑧 = 𝑎𝑎13𝜎𝜎𝑥𝑥 + 𝑎𝑎23𝜎𝜎𝑦𝑦 + 𝑎𝑎33𝜎𝜎𝑧𝑧 + 𝑎𝑎35𝜏𝜏xz,           𝛾𝛾yz = 𝑎𝑎44 𝜏𝜏yz + 𝑎𝑎46 𝜏𝜏xy                                (1) 
           𝛾𝛾xy = 𝑎𝑎46𝜏𝜏yz + 𝑎𝑎66𝜏𝜏xy,                                      𝛾𝛾xz = 𝑎𝑎15𝜎𝜎𝑥𝑥 + 𝑎𝑎25𝜎𝜎𝑦𝑦 + 𝑎𝑎35𝜎𝜎𝑧𝑧 + 𝑎𝑎55𝜏𝜏xz 

 
 

а– general scheme; b - cross-section across the isotropic plane 
Fig. 1 - Sloped-layered rock massif 

             
where the strain coefficients 𝑎𝑎ij (𝑖𝑖, 𝑗𝑗 = 1 − 6) are equal: 

    𝑎𝑎11 = 𝐸𝐸1
−1cos4𝜙𝜙 + 0.25(𝐺𝐺2

−1 − 2𝜈𝜈2𝐸𝐸1
−1) sin22𝜙𝜙 + 𝐸𝐸2

−1sin4𝜙𝜙,    𝑎𝑎22 = 𝐸𝐸1
−1, 

    𝑎𝑎33 = 𝐸𝐸1
−1sin4𝜙𝜙 + 0.25(𝐺𝐺2

−1 − 2 𝜈𝜈2𝐸𝐸1
−1) sin22𝜙𝜙 + 𝐸𝐸2

−1cos4𝜙𝜙, 
    𝑎𝑎44 = 2 𝐸𝐸1

−1(1 + 𝜈𝜈1) sin2𝜙𝜙 + 𝐺𝐺2
−2cos2𝜙𝜙, 𝑎𝑎55 = 𝐺𝐺2

−1 + (𝐸𝐸1
−1(1 + 2 𝜈𝜈2) + 𝐸𝐸2

−1 − 𝐺𝐺2
−1) sin22𝜙𝜙, 

             𝑎𝑎66 = 2 𝐸𝐸1
−1(1 + 𝜈𝜈1) cos2𝜙𝜙 + 𝐺𝐺2

−1sin2𝜙𝜙, 𝑎𝑎12 = −𝐸𝐸1
−1𝜈𝜈1cos2𝜙𝜙 + 𝐺𝐺2

−1𝜈𝜈2 sin2𝜙𝜙,                               
             𝑎𝑎13 = −𝐸𝐸1

−1𝜈𝜈2 + 0.25(𝐸𝐸1
−1(1 + 2 𝜈𝜈2) + 𝐸𝐸2

−1 − 𝐺𝐺2
−1) sin22𝜙𝜙,                                              (2) 

             𝑎𝑎15 = [𝐸𝐸1
−1(1 + 𝜈𝜈2) cos2𝜙𝜙 − (𝐸𝐸2

−1 + 𝐸𝐸1
−1𝜈𝜈2) sin2𝜙𝜙 − 0.5 𝐺𝐺2

−1cos2𝜙𝜙] sin2𝜙𝜙, 
             𝑎𝑎23 = −𝐸𝐸1

−1𝜈𝜈1sin2𝜙𝜙 − 𝐸𝐸1
−1𝜈𝜈2cos2𝜙𝜙, 𝑎𝑎25 = −𝐸𝐸1

−1(𝜈𝜈1 − 𝜈𝜈2) sin2𝜙𝜙, 
             𝑎𝑎35 = [𝐸𝐸1

−1(1 + 𝜈𝜈2) sin2𝜙𝜙 − (𝐸𝐸2
−1 + 𝐸𝐸1

−1𝜈𝜈2) cos2𝜙𝜙 + 0.5 𝐺𝐺2
−1cos2𝜙𝜙] sin2𝜙𝜙, 

             𝑎𝑎46 = −0.5 (𝐺𝐺2
−1 − 2 𝐸𝐸1

−1(1 + 𝜈𝜈1))  sin2𝜙𝜙, 
and the remaining strain coefficients are zero. 

Here Е1 and Е2- are elastic moduli in the isotropy plane and perpendicular to it; 𝜈𝜈1 and 𝜈𝜈2- 
Poisson's coefficients in the isotropy plane and perpendicular to it during compression-expansion in 
this plane; 𝐺𝐺2- is shear modulus for planes normal to the isotropy plane. The values Е1,Е2, 𝜈𝜈1, 𝜈𝜈2are 
found from uniaxial compression experiments on rock samples parallel and perpendicular to the 
layering. First, the modulus of elasticity Е𝛼𝛼 in compression of the sample at an angle 𝛼𝛼 to the 
layering is determined from the formula: 

𝐸𝐸𝛼𝛼 = (𝐸𝐸1
−1cos4𝜙𝜙 + 0.25 (𝐺𝐺2

−1 − 2 𝐸𝐸1
−1𝜈𝜈2) sin22𝛼𝛼 + 𝐸𝐸2

−1sin4𝛼𝛼) −1,         
and then the shear modulus 𝐺𝐺2by the formula: 

𝐺𝐺2 = sin22𝛼𝛼 [0.25 (𝐸𝐸𝛼𝛼
−1 − 𝐸𝐸1

−1cos4𝛼𝛼 − 𝐸𝐸2
−1sin4𝛼𝛼 + 0.5 𝐸𝐸1

−1𝜈𝜈2 sin22𝛼𝛼)] −1. 
Determination of the stress components in an intact continuous rock massif, from now on 

referred to as the main ones, is hypothetical in nature. A.N. Dinnik's hypothesis about the absence 
of horizontal displacements in an intact thickness under the action of its own weight only, which is 
equivalent to the absence of expansion of the rock massif in the horizontal directions, is widely 
used. Then, taking 𝜎𝜎𝑧𝑧 = −𝛾𝛾𝛾𝛾and using (1), we obtain 

𝜎𝜎𝑥𝑥 = 𝜆𝜆𝑥𝑥 𝜎𝜎𝑧𝑧, 𝜎𝜎𝑦𝑦 = 𝜆𝜆𝑦𝑦 𝜎𝜎𝑧𝑧, 𝜏𝜏𝑥𝑥𝑥𝑥 = 𝜆𝜆𝑥𝑥𝑥𝑥 𝜎𝜎𝑧𝑧, 𝜏𝜏𝑦𝑦𝑦𝑦 = 𝜏𝜏𝑥𝑥𝑥𝑥 = 0. 
Here 𝜆𝜆𝑥𝑥, 𝜆𝜆𝑦𝑦- coefficients of lateral pressure across and along the isotropy plane; 𝛾𝛾, Н- 

volumetric weight of the rock mass and depth of the point in question. At horizontal layering 
(isotropy plane), when 𝜙𝜙 = 0, we have: 

                         𝜆𝜆𝑥𝑥 = 𝜆𝜆𝑦𝑦 = 𝜈𝜈2 (1 − 𝜈𝜈1)−1; 𝜆𝜆𝑥𝑥𝑥𝑥 = 0.                                                (3) 
For an isotropic medium (𝐸𝐸1 = 𝐸𝐸2 = 𝐸𝐸, 𝐺𝐺2 = 𝐺𝐺, 𝜈𝜈1 = 𝜈𝜈2 = 𝜈𝜈) we obtain the well-known A.N. 

Dinnik's coefficient: 

 are equal:

      𝜀𝜀𝑧𝑧 = 𝑎𝑎13𝜎𝜎𝑥𝑥 + 𝑎𝑎23𝜎𝜎𝑦𝑦 + 𝑎𝑎33𝜎𝜎𝑧𝑧 + 𝑎𝑎35𝜏𝜏xz,           𝛾𝛾yz = 𝑎𝑎44 𝜏𝜏yz + 𝑎𝑎46 𝜏𝜏xy                                (1) 
           𝛾𝛾xy = 𝑎𝑎46𝜏𝜏yz + 𝑎𝑎66𝜏𝜏xy,                                      𝛾𝛾xz = 𝑎𝑎15𝜎𝜎𝑥𝑥 + 𝑎𝑎25𝜎𝜎𝑦𝑦 + 𝑎𝑎35𝜎𝜎𝑧𝑧 + 𝑎𝑎55𝜏𝜏xz 

 
 

а– general scheme; b - cross-section across the isotropic plane 
Fig. 1 - Sloped-layered rock massif 

             
where the strain coefficients 𝑎𝑎ij (𝑖𝑖, 𝑗𝑗 = 1 − 6) are equal: 

    𝑎𝑎11 = 𝐸𝐸1
−1cos4𝜙𝜙 + 0.25(𝐺𝐺2

−1 − 2𝜈𝜈2𝐸𝐸1
−1) sin22𝜙𝜙 + 𝐸𝐸2

−1sin4𝜙𝜙,    𝑎𝑎22 = 𝐸𝐸1
−1, 

    𝑎𝑎33 = 𝐸𝐸1
−1sin4𝜙𝜙 + 0.25(𝐺𝐺2

−1 − 2 𝜈𝜈2𝐸𝐸1
−1) sin22𝜙𝜙 + 𝐸𝐸2

−1cos4𝜙𝜙, 
    𝑎𝑎44 = 2 𝐸𝐸1

−1(1 + 𝜈𝜈1) sin2𝜙𝜙 + 𝐺𝐺2
−2cos2𝜙𝜙, 𝑎𝑎55 = 𝐺𝐺2

−1 + (𝐸𝐸1
−1(1 + 2 𝜈𝜈2) + 𝐸𝐸2

−1 − 𝐺𝐺2
−1) sin22𝜙𝜙, 

             𝑎𝑎66 = 2 𝐸𝐸1
−1(1 + 𝜈𝜈1) cos2𝜙𝜙 + 𝐺𝐺2

−1sin2𝜙𝜙, 𝑎𝑎12 = −𝐸𝐸1
−1𝜈𝜈1cos2𝜙𝜙 + 𝐺𝐺2

−1𝜈𝜈2 sin2𝜙𝜙,                               
             𝑎𝑎13 = −𝐸𝐸1

−1𝜈𝜈2 + 0.25(𝐸𝐸1
−1(1 + 2 𝜈𝜈2) + 𝐸𝐸2

−1 − 𝐺𝐺2
−1) sin22𝜙𝜙,                                              (2) 

             𝑎𝑎15 = [𝐸𝐸1
−1(1 + 𝜈𝜈2) cos2𝜙𝜙 − (𝐸𝐸2

−1 + 𝐸𝐸1
−1𝜈𝜈2) sin2𝜙𝜙 − 0.5 𝐺𝐺2

−1cos2𝜙𝜙] sin2𝜙𝜙, 
             𝑎𝑎23 = −𝐸𝐸1

−1𝜈𝜈1sin2𝜙𝜙 − 𝐸𝐸1
−1𝜈𝜈2cos2𝜙𝜙, 𝑎𝑎25 = −𝐸𝐸1

−1(𝜈𝜈1 − 𝜈𝜈2) sin2𝜙𝜙, 
             𝑎𝑎35 = [𝐸𝐸1

−1(1 + 𝜈𝜈2) sin2𝜙𝜙 − (𝐸𝐸2
−1 + 𝐸𝐸1

−1𝜈𝜈2) cos2𝜙𝜙 + 0.5 𝐺𝐺2
−1cos2𝜙𝜙] sin2𝜙𝜙, 

             𝑎𝑎46 = −0.5 (𝐺𝐺2
−1 − 2 𝐸𝐸1

−1(1 + 𝜈𝜈1))  sin2𝜙𝜙, 
and the remaining strain coefficients are zero. 

Here Е1 and Е2- are elastic moduli in the isotropy plane and perpendicular to it; 𝜈𝜈1 and 𝜈𝜈2- 
Poisson's coefficients in the isotropy plane and perpendicular to it during compression-expansion in 
this plane; 𝐺𝐺2- is shear modulus for planes normal to the isotropy plane. The values Е1,Е2, 𝜈𝜈1, 𝜈𝜈2are 
found from uniaxial compression experiments on rock samples parallel and perpendicular to the 
layering. First, the modulus of elasticity Е𝛼𝛼 in compression of the sample at an angle 𝛼𝛼 to the 
layering is determined from the formula: 

𝐸𝐸𝛼𝛼 = (𝐸𝐸1
−1cos4𝜙𝜙 + 0.25 (𝐺𝐺2

−1 − 2 𝐸𝐸1
−1𝜈𝜈2) sin22𝛼𝛼 + 𝐸𝐸2

−1sin4𝛼𝛼) −1,         
and then the shear modulus 𝐺𝐺2by the formula: 

𝐺𝐺2 = sin22𝛼𝛼 [0.25 (𝐸𝐸𝛼𝛼
−1 − 𝐸𝐸1

−1cos4𝛼𝛼 − 𝐸𝐸2
−1sin4𝛼𝛼 + 0.5 𝐸𝐸1

−1𝜈𝜈2 sin22𝛼𝛼)] −1. 
Determination of the stress components in an intact continuous rock massif, from now on 

referred to as the main ones, is hypothetical in nature. A.N. Dinnik's hypothesis about the absence 
of horizontal displacements in an intact thickness under the action of its own weight only, which is 
equivalent to the absence of expansion of the rock massif in the horizontal directions, is widely 
used. Then, taking 𝜎𝜎𝑧𝑧 = −𝛾𝛾𝛾𝛾and using (1), we obtain 

𝜎𝜎𝑥𝑥 = 𝜆𝜆𝑥𝑥 𝜎𝜎𝑧𝑧, 𝜎𝜎𝑦𝑦 = 𝜆𝜆𝑦𝑦 𝜎𝜎𝑧𝑧, 𝜏𝜏𝑥𝑥𝑥𝑥 = 𝜆𝜆𝑥𝑥𝑥𝑥 𝜎𝜎𝑧𝑧, 𝜏𝜏𝑦𝑦𝑦𝑦 = 𝜏𝜏𝑥𝑥𝑥𝑥 = 0. 
Here 𝜆𝜆𝑥𝑥, 𝜆𝜆𝑦𝑦- coefficients of lateral pressure across and along the isotropy plane; 𝛾𝛾, Н- 

volumetric weight of the rock mass and depth of the point in question. At horizontal layering 
(isotropy plane), when 𝜙𝜙 = 0, we have: 

                         𝜆𝜆𝑥𝑥 = 𝜆𝜆𝑦𝑦 = 𝜈𝜈2 (1 − 𝜈𝜈1)−1; 𝜆𝜆𝑥𝑥𝑥𝑥 = 0.                                                (3) 
For an isotropic medium (𝐸𝐸1 = 𝐸𝐸2 = 𝐸𝐸, 𝐺𝐺2 = 𝐺𝐺, 𝜈𝜈1 = 𝜈𝜈2 = 𝜈𝜈) we obtain the well-known A.N. 

Dinnik's coefficient: 

      𝜀𝜀𝑧𝑧 = 𝑎𝑎13𝜎𝜎𝑥𝑥 + 𝑎𝑎23𝜎𝜎𝑦𝑦 + 𝑎𝑎33𝜎𝜎𝑧𝑧 + 𝑎𝑎35𝜏𝜏xz,           𝛾𝛾yz = 𝑎𝑎44 𝜏𝜏yz + 𝑎𝑎46 𝜏𝜏xy                                (1) 
           𝛾𝛾xy = 𝑎𝑎46𝜏𝜏yz + 𝑎𝑎66𝜏𝜏xy,                                      𝛾𝛾xz = 𝑎𝑎15𝜎𝜎𝑥𝑥 + 𝑎𝑎25𝜎𝜎𝑦𝑦 + 𝑎𝑎35𝜎𝜎𝑧𝑧 + 𝑎𝑎55𝜏𝜏xz 

 
 

а– general scheme; b - cross-section across the isotropic plane 
Fig. 1 - Sloped-layered rock massif 

             
where the strain coefficients 𝑎𝑎ij (𝑖𝑖, 𝑗𝑗 = 1 − 6) are equal: 

    𝑎𝑎11 = 𝐸𝐸1
−1cos4𝜙𝜙 + 0.25(𝐺𝐺2

−1 − 2𝜈𝜈2𝐸𝐸1
−1) sin22𝜙𝜙 + 𝐸𝐸2

−1sin4𝜙𝜙,    𝑎𝑎22 = 𝐸𝐸1
−1, 

    𝑎𝑎33 = 𝐸𝐸1
−1sin4𝜙𝜙 + 0.25(𝐺𝐺2

−1 − 2 𝜈𝜈2𝐸𝐸1
−1) sin22𝜙𝜙 + 𝐸𝐸2

−1cos4𝜙𝜙, 
    𝑎𝑎44 = 2 𝐸𝐸1

−1(1 + 𝜈𝜈1) sin2𝜙𝜙 + 𝐺𝐺2
−2cos2𝜙𝜙, 𝑎𝑎55 = 𝐺𝐺2

−1 + (𝐸𝐸1
−1(1 + 2 𝜈𝜈2) + 𝐸𝐸2

−1 − 𝐺𝐺2
−1) sin22𝜙𝜙, 

             𝑎𝑎66 = 2 𝐸𝐸1
−1(1 + 𝜈𝜈1) cos2𝜙𝜙 + 𝐺𝐺2

−1sin2𝜙𝜙, 𝑎𝑎12 = −𝐸𝐸1
−1𝜈𝜈1cos2𝜙𝜙 + 𝐺𝐺2

−1𝜈𝜈2 sin2𝜙𝜙,                               
             𝑎𝑎13 = −𝐸𝐸1

−1𝜈𝜈2 + 0.25(𝐸𝐸1
−1(1 + 2 𝜈𝜈2) + 𝐸𝐸2

−1 − 𝐺𝐺2
−1) sin22𝜙𝜙,                                              (2) 

             𝑎𝑎15 = [𝐸𝐸1
−1(1 + 𝜈𝜈2) cos2𝜙𝜙 − (𝐸𝐸2

−1 + 𝐸𝐸1
−1𝜈𝜈2) sin2𝜙𝜙 − 0.5 𝐺𝐺2

−1cos2𝜙𝜙] sin2𝜙𝜙, 
             𝑎𝑎23 = −𝐸𝐸1

−1𝜈𝜈1sin2𝜙𝜙 − 𝐸𝐸1
−1𝜈𝜈2cos2𝜙𝜙, 𝑎𝑎25 = −𝐸𝐸1

−1(𝜈𝜈1 − 𝜈𝜈2) sin2𝜙𝜙, 
             𝑎𝑎35 = [𝐸𝐸1

−1(1 + 𝜈𝜈2) sin2𝜙𝜙 − (𝐸𝐸2
−1 + 𝐸𝐸1

−1𝜈𝜈2) cos2𝜙𝜙 + 0.5 𝐺𝐺2
−1cos2𝜙𝜙] sin2𝜙𝜙, 

             𝑎𝑎46 = −0.5 (𝐺𝐺2
−1 − 2 𝐸𝐸1

−1(1 + 𝜈𝜈1))  sin2𝜙𝜙, 
and the remaining strain coefficients are zero. 

Here Е1 and Е2- are elastic moduli in the isotropy plane and perpendicular to it; 𝜈𝜈1 and 𝜈𝜈2- 
Poisson's coefficients in the isotropy plane and perpendicular to it during compression-expansion in 
this plane; 𝐺𝐺2- is shear modulus for planes normal to the isotropy plane. The values Е1,Е2, 𝜈𝜈1, 𝜈𝜈2are 
found from uniaxial compression experiments on rock samples parallel and perpendicular to the 
layering. First, the modulus of elasticity Е𝛼𝛼 in compression of the sample at an angle 𝛼𝛼 to the 
layering is determined from the formula: 

𝐸𝐸𝛼𝛼 = (𝐸𝐸1
−1cos4𝜙𝜙 + 0.25 (𝐺𝐺2

−1 − 2 𝐸𝐸1
−1𝜈𝜈2) sin22𝛼𝛼 + 𝐸𝐸2

−1sin4𝛼𝛼) −1,         
and then the shear modulus 𝐺𝐺2by the formula: 

𝐺𝐺2 = sin22𝛼𝛼 [0.25 (𝐸𝐸𝛼𝛼
−1 − 𝐸𝐸1

−1cos4𝛼𝛼 − 𝐸𝐸2
−1sin4𝛼𝛼 + 0.5 𝐸𝐸1

−1𝜈𝜈2 sin22𝛼𝛼)] −1. 
Determination of the stress components in an intact continuous rock massif, from now on 

referred to as the main ones, is hypothetical in nature. A.N. Dinnik's hypothesis about the absence 
of horizontal displacements in an intact thickness under the action of its own weight only, which is 
equivalent to the absence of expansion of the rock massif in the horizontal directions, is widely 
used. Then, taking 𝜎𝜎𝑧𝑧 = −𝛾𝛾𝛾𝛾and using (1), we obtain 

𝜎𝜎𝑥𝑥 = 𝜆𝜆𝑥𝑥 𝜎𝜎𝑧𝑧, 𝜎𝜎𝑦𝑦 = 𝜆𝜆𝑦𝑦 𝜎𝜎𝑧𝑧, 𝜏𝜏𝑥𝑥𝑥𝑥 = 𝜆𝜆𝑥𝑥𝑥𝑥 𝜎𝜎𝑧𝑧, 𝜏𝜏𝑦𝑦𝑦𝑦 = 𝜏𝜏𝑥𝑥𝑥𝑥 = 0. 
Here 𝜆𝜆𝑥𝑥, 𝜆𝜆𝑦𝑦- coefficients of lateral pressure across and along the isotropy plane; 𝛾𝛾, Н- 

volumetric weight of the rock mass and depth of the point in question. At horizontal layering 
(isotropy plane), when 𝜙𝜙 = 0, we have: 

                         𝜆𝜆𝑥𝑥 = 𝜆𝜆𝑦𝑦 = 𝜈𝜈2 (1 − 𝜈𝜈1)−1; 𝜆𝜆𝑥𝑥𝑥𝑥 = 0.                                                (3) 
For an isotropic medium (𝐸𝐸1 = 𝐸𝐸2 = 𝐸𝐸, 𝐺𝐺2 = 𝐺𝐺, 𝜈𝜈1 = 𝜈𝜈2 = 𝜈𝜈) we obtain the well-known A.N. 

Dinnik's coefficient: 

				            (2)

      𝜀𝜀𝑧𝑧 = 𝑎𝑎13𝜎𝜎𝑥𝑥 + 𝑎𝑎23𝜎𝜎𝑦𝑦 + 𝑎𝑎33𝜎𝜎𝑧𝑧 + 𝑎𝑎35𝜏𝜏xz,           𝛾𝛾yz = 𝑎𝑎44 𝜏𝜏yz + 𝑎𝑎46 𝜏𝜏xy                                (1) 
           𝛾𝛾xy = 𝑎𝑎46𝜏𝜏yz + 𝑎𝑎66𝜏𝜏xy,                                      𝛾𝛾xz = 𝑎𝑎15𝜎𝜎𝑥𝑥 + 𝑎𝑎25𝜎𝜎𝑦𝑦 + 𝑎𝑎35𝜎𝜎𝑧𝑧 + 𝑎𝑎55𝜏𝜏xz 
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where the strain coefficients 𝑎𝑎ij (𝑖𝑖, 𝑗𝑗 = 1 − 6) are equal: 
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Here Е1 and Е2- are elastic moduli in the isotropy plane and perpendicular to it; 𝜈𝜈1 and 𝜈𝜈2- 
Poisson's coefficients in the isotropy plane and perpendicular to it during compression-expansion in 
this plane; 𝐺𝐺2- is shear modulus for planes normal to the isotropy plane. The values Е1,Е2, 𝜈𝜈1, 𝜈𝜈2are 
found from uniaxial compression experiments on rock samples parallel and perpendicular to the 
layering. First, the modulus of elasticity Е𝛼𝛼 in compression of the sample at an angle 𝛼𝛼 to the 
layering is determined from the formula: 
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Dinnik's coefficient: 

      𝜀𝜀𝑧𝑧 = 𝑎𝑎13𝜎𝜎𝑥𝑥 + 𝑎𝑎23𝜎𝜎𝑦𝑦 + 𝑎𝑎33𝜎𝜎𝑧𝑧 + 𝑎𝑎35𝜏𝜏xz,           𝛾𝛾yz = 𝑎𝑎44 𝜏𝜏yz + 𝑎𝑎46 𝜏𝜏xy                                (1) 
           𝛾𝛾xy = 𝑎𝑎46𝜏𝜏yz + 𝑎𝑎66𝜏𝜏xy,                                      𝛾𝛾xz = 𝑎𝑎15𝜎𝜎𝑥𝑥 + 𝑎𝑎25𝜎𝜎𝑦𝑦 + 𝑎𝑎35𝜎𝜎𝑧𝑧 + 𝑎𝑎55𝜏𝜏xz 

 
 

а– general scheme; b - cross-section across the isotropic plane 
Fig. 1 - Sloped-layered rock massif 

             
where the strain coefficients 𝑎𝑎ij (𝑖𝑖, 𝑗𝑗 = 1 − 6) are equal: 

    𝑎𝑎11 = 𝐸𝐸1
−1cos4𝜙𝜙 + 0.25(𝐺𝐺2

−1 − 2𝜈𝜈2𝐸𝐸1
−1) sin22𝜙𝜙 + 𝐸𝐸2

−1sin4𝜙𝜙,    𝑎𝑎22 = 𝐸𝐸1
−1, 

    𝑎𝑎33 = 𝐸𝐸1
−1sin4𝜙𝜙 + 0.25(𝐺𝐺2

−1 − 2 𝜈𝜈2𝐸𝐸1
−1) sin22𝜙𝜙 + 𝐸𝐸2

−1cos4𝜙𝜙, 
    𝑎𝑎44 = 2 𝐸𝐸1

−1(1 + 𝜈𝜈1) sin2𝜙𝜙 + 𝐺𝐺2
−2cos2𝜙𝜙, 𝑎𝑎55 = 𝐺𝐺2

−1 + (𝐸𝐸1
−1(1 + 2 𝜈𝜈2) + 𝐸𝐸2

−1 − 𝐺𝐺2
−1) sin22𝜙𝜙, 

             𝑎𝑎66 = 2 𝐸𝐸1
−1(1 + 𝜈𝜈1) cos2𝜙𝜙 + 𝐺𝐺2

−1sin2𝜙𝜙, 𝑎𝑎12 = −𝐸𝐸1
−1𝜈𝜈1cos2𝜙𝜙 + 𝐺𝐺2

−1𝜈𝜈2 sin2𝜙𝜙,                               
             𝑎𝑎13 = −𝐸𝐸1

−1𝜈𝜈2 + 0.25(𝐸𝐸1
−1(1 + 2 𝜈𝜈2) + 𝐸𝐸2

−1 − 𝐺𝐺2
−1) sin22𝜙𝜙,                                              (2) 

             𝑎𝑎15 = [𝐸𝐸1
−1(1 + 𝜈𝜈2) cos2𝜙𝜙 − (𝐸𝐸2

−1 + 𝐸𝐸1
−1𝜈𝜈2) sin2𝜙𝜙 − 0.5 𝐺𝐺2

−1cos2𝜙𝜙] sin2𝜙𝜙, 
             𝑎𝑎23 = −𝐸𝐸1

−1𝜈𝜈1sin2𝜙𝜙 − 𝐸𝐸1
−1𝜈𝜈2cos2𝜙𝜙, 𝑎𝑎25 = −𝐸𝐸1

−1(𝜈𝜈1 − 𝜈𝜈2) sin2𝜙𝜙, 
             𝑎𝑎35 = [𝐸𝐸1

−1(1 + 𝜈𝜈2) sin2𝜙𝜙 − (𝐸𝐸2
−1 + 𝐸𝐸1

−1𝜈𝜈2) cos2𝜙𝜙 + 0.5 𝐺𝐺2
−1cos2𝜙𝜙] sin2𝜙𝜙, 

             𝑎𝑎46 = −0.5 (𝐺𝐺2
−1 − 2 𝐸𝐸1

−1(1 + 𝜈𝜈1))  sin2𝜙𝜙, 
and the remaining strain coefficients are zero. 

Here Е1 and Е2- are elastic moduli in the isotropy plane and perpendicular to it; 𝜈𝜈1 and 𝜈𝜈2- 
Poisson's coefficients in the isotropy plane and perpendicular to it during compression-expansion in 
this plane; 𝐺𝐺2- is shear modulus for planes normal to the isotropy plane. The values Е1,Е2, 𝜈𝜈1, 𝜈𝜈2are 
found from uniaxial compression experiments on rock samples parallel and perpendicular to the 
layering. First, the modulus of elasticity Е𝛼𝛼 in compression of the sample at an angle 𝛼𝛼 to the 
layering is determined from the formula: 

𝐸𝐸𝛼𝛼 = (𝐸𝐸1
−1cos4𝜙𝜙 + 0.25 (𝐺𝐺2

−1 − 2 𝐸𝐸1
−1𝜈𝜈2) sin22𝛼𝛼 + 𝐸𝐸2

−1sin4𝛼𝛼) −1,         
and then the shear modulus 𝐺𝐺2by the formula: 

𝐺𝐺2 = sin22𝛼𝛼 [0.25 (𝐸𝐸𝛼𝛼
−1 − 𝐸𝐸1

−1cos4𝛼𝛼 − 𝐸𝐸2
−1sin4𝛼𝛼 + 0.5 𝐸𝐸1

−1𝜈𝜈2 sin22𝛼𝛼)] −1. 
Determination of the stress components in an intact continuous rock massif, from now on 

referred to as the main ones, is hypothetical in nature. A.N. Dinnik's hypothesis about the absence 
of horizontal displacements in an intact thickness under the action of its own weight only, which is 
equivalent to the absence of expansion of the rock massif in the horizontal directions, is widely 
used. Then, taking 𝜎𝜎𝑧𝑧 = −𝛾𝛾𝛾𝛾and using (1), we obtain 

𝜎𝜎𝑥𝑥 = 𝜆𝜆𝑥𝑥 𝜎𝜎𝑧𝑧, 𝜎𝜎𝑦𝑦 = 𝜆𝜆𝑦𝑦 𝜎𝜎𝑧𝑧, 𝜏𝜏𝑥𝑥𝑥𝑥 = 𝜆𝜆𝑥𝑥𝑥𝑥 𝜎𝜎𝑧𝑧, 𝜏𝜏𝑦𝑦𝑦𝑦 = 𝜏𝜏𝑥𝑥𝑥𝑥 = 0. 
Here 𝜆𝜆𝑥𝑥, 𝜆𝜆𝑦𝑦- coefficients of lateral pressure across and along the isotropy plane; 𝛾𝛾, Н- 

volumetric weight of the rock mass and depth of the point in question. At horizontal layering 
(isotropy plane), when 𝜙𝜙 = 0, we have: 

                         𝜆𝜆𝑥𝑥 = 𝜆𝜆𝑦𝑦 = 𝜈𝜈2 (1 − 𝜈𝜈1)−1; 𝜆𝜆𝑥𝑥𝑥𝑥 = 0.                                                (3) 
For an isotropic medium (𝐸𝐸1 = 𝐸𝐸2 = 𝐸𝐸, 𝐺𝐺2 = 𝐺𝐺, 𝜈𝜈1 = 𝜈𝜈2 = 𝜈𝜈) we obtain the well-known A.N. 

Dinnik's coefficient: 

      𝜀𝜀𝑧𝑧 = 𝑎𝑎13𝜎𝜎𝑥𝑥 + 𝑎𝑎23𝜎𝜎𝑦𝑦 + 𝑎𝑎33𝜎𝜎𝑧𝑧 + 𝑎𝑎35𝜏𝜏xz,           𝛾𝛾yz = 𝑎𝑎44 𝜏𝜏yz + 𝑎𝑎46 𝜏𝜏xy                                (1) 
           𝛾𝛾xy = 𝑎𝑎46𝜏𝜏yz + 𝑎𝑎66𝜏𝜏xy,                                      𝛾𝛾xz = 𝑎𝑎15𝜎𝜎𝑥𝑥 + 𝑎𝑎25𝜎𝜎𝑦𝑦 + 𝑎𝑎35𝜎𝜎𝑧𝑧 + 𝑎𝑎55𝜏𝜏xz 

 
 

а– general scheme; b - cross-section across the isotropic plane 
Fig. 1 - Sloped-layered rock massif 

             
where the strain coefficients 𝑎𝑎ij (𝑖𝑖, 𝑗𝑗 = 1 − 6) are equal: 

    𝑎𝑎11 = 𝐸𝐸1
−1cos4𝜙𝜙 + 0.25(𝐺𝐺2

−1 − 2𝜈𝜈2𝐸𝐸1
−1) sin22𝜙𝜙 + 𝐸𝐸2

−1sin4𝜙𝜙,    𝑎𝑎22 = 𝐸𝐸1
−1, 

    𝑎𝑎33 = 𝐸𝐸1
−1sin4𝜙𝜙 + 0.25(𝐺𝐺2

−1 − 2 𝜈𝜈2𝐸𝐸1
−1) sin22𝜙𝜙 + 𝐸𝐸2

−1cos4𝜙𝜙, 
    𝑎𝑎44 = 2 𝐸𝐸1

−1(1 + 𝜈𝜈1) sin2𝜙𝜙 + 𝐺𝐺2
−2cos2𝜙𝜙, 𝑎𝑎55 = 𝐺𝐺2

−1 + (𝐸𝐸1
−1(1 + 2 𝜈𝜈2) + 𝐸𝐸2

−1 − 𝐺𝐺2
−1) sin22𝜙𝜙, 

             𝑎𝑎66 = 2 𝐸𝐸1
−1(1 + 𝜈𝜈1) cos2𝜙𝜙 + 𝐺𝐺2

−1sin2𝜙𝜙, 𝑎𝑎12 = −𝐸𝐸1
−1𝜈𝜈1cos2𝜙𝜙 + 𝐺𝐺2

−1𝜈𝜈2 sin2𝜙𝜙,                               
             𝑎𝑎13 = −𝐸𝐸1

−1𝜈𝜈2 + 0.25(𝐸𝐸1
−1(1 + 2 𝜈𝜈2) + 𝐸𝐸2

−1 − 𝐺𝐺2
−1) sin22𝜙𝜙,                                              (2) 

             𝑎𝑎15 = [𝐸𝐸1
−1(1 + 𝜈𝜈2) cos2𝜙𝜙 − (𝐸𝐸2

−1 + 𝐸𝐸1
−1𝜈𝜈2) sin2𝜙𝜙 − 0.5 𝐺𝐺2

−1cos2𝜙𝜙] sin2𝜙𝜙, 
             𝑎𝑎23 = −𝐸𝐸1

−1𝜈𝜈1sin2𝜙𝜙 − 𝐸𝐸1
−1𝜈𝜈2cos2𝜙𝜙, 𝑎𝑎25 = −𝐸𝐸1

−1(𝜈𝜈1 − 𝜈𝜈2) sin2𝜙𝜙, 
             𝑎𝑎35 = [𝐸𝐸1

−1(1 + 𝜈𝜈2) sin2𝜙𝜙 − (𝐸𝐸2
−1 + 𝐸𝐸1

−1𝜈𝜈2) cos2𝜙𝜙 + 0.5 𝐺𝐺2
−1cos2𝜙𝜙] sin2𝜙𝜙, 

             𝑎𝑎46 = −0.5 (𝐺𝐺2
−1 − 2 𝐸𝐸1

−1(1 + 𝜈𝜈1))  sin2𝜙𝜙, 
and the remaining strain coefficients are zero. 

Here Е1 and Е2- are elastic moduli in the isotropy plane and perpendicular to it; 𝜈𝜈1 and 𝜈𝜈2- 
Poisson's coefficients in the isotropy plane and perpendicular to it during compression-expansion in 
this plane; 𝐺𝐺2- is shear modulus for planes normal to the isotropy plane. The values Е1,Е2, 𝜈𝜈1, 𝜈𝜈2are 
found from uniaxial compression experiments on rock samples parallel and perpendicular to the 
layering. First, the modulus of elasticity Е𝛼𝛼 in compression of the sample at an angle 𝛼𝛼 to the 
layering is determined from the formula: 

𝐸𝐸𝛼𝛼 = (𝐸𝐸1
−1cos4𝜙𝜙 + 0.25 (𝐺𝐺2

−1 − 2 𝐸𝐸1
−1𝜈𝜈2) sin22𝛼𝛼 + 𝐸𝐸2

−1sin4𝛼𝛼) −1,         
and then the shear modulus 𝐺𝐺2by the formula: 

𝐺𝐺2 = sin22𝛼𝛼 [0.25 (𝐸𝐸𝛼𝛼
−1 − 𝐸𝐸1

−1cos4𝛼𝛼 − 𝐸𝐸2
−1sin4𝛼𝛼 + 0.5 𝐸𝐸1

−1𝜈𝜈2 sin22𝛼𝛼)] −1. 
Determination of the stress components in an intact continuous rock massif, from now on 

referred to as the main ones, is hypothetical in nature. A.N. Dinnik's hypothesis about the absence 
of horizontal displacements in an intact thickness under the action of its own weight only, which is 
equivalent to the absence of expansion of the rock massif in the horizontal directions, is widely 
used. Then, taking 𝜎𝜎𝑧𝑧 = −𝛾𝛾𝛾𝛾and using (1), we obtain 

𝜎𝜎𝑥𝑥 = 𝜆𝜆𝑥𝑥 𝜎𝜎𝑧𝑧, 𝜎𝜎𝑦𝑦 = 𝜆𝜆𝑦𝑦 𝜎𝜎𝑧𝑧, 𝜏𝜏𝑥𝑥𝑥𝑥 = 𝜆𝜆𝑥𝑥𝑥𝑥 𝜎𝜎𝑧𝑧, 𝜏𝜏𝑦𝑦𝑦𝑦 = 𝜏𝜏𝑥𝑥𝑥𝑥 = 0. 
Here 𝜆𝜆𝑥𝑥, 𝜆𝜆𝑦𝑦- coefficients of lateral pressure across and along the isotropy plane; 𝛾𝛾, Н- 

volumetric weight of the rock mass and depth of the point in question. At horizontal layering 
(isotropy plane), when 𝜙𝜙 = 0, we have: 

                         𝜆𝜆𝑥𝑥 = 𝜆𝜆𝑦𝑦 = 𝜈𝜈2 (1 − 𝜈𝜈1)−1; 𝜆𝜆𝑥𝑥𝑥𝑥 = 0.                                                (3) 
For an isotropic medium (𝐸𝐸1 = 𝐸𝐸2 = 𝐸𝐸, 𝐺𝐺2 = 𝐺𝐺, 𝜈𝜈1 = 𝜈𝜈2 = 𝜈𝜈) we obtain the well-known A.N. 

Dinnik's coefficient: 

      𝜀𝜀𝑧𝑧 = 𝑎𝑎13𝜎𝜎𝑥𝑥 + 𝑎𝑎23𝜎𝜎𝑦𝑦 + 𝑎𝑎33𝜎𝜎𝑧𝑧 + 𝑎𝑎35𝜏𝜏xz,           𝛾𝛾yz = 𝑎𝑎44 𝜏𝜏yz + 𝑎𝑎46 𝜏𝜏xy                                (1) 
           𝛾𝛾xy = 𝑎𝑎46𝜏𝜏yz + 𝑎𝑎66𝜏𝜏xy,                                      𝛾𝛾xz = 𝑎𝑎15𝜎𝜎𝑥𝑥 + 𝑎𝑎25𝜎𝜎𝑦𝑦 + 𝑎𝑎35𝜎𝜎𝑧𝑧 + 𝑎𝑎55𝜏𝜏xz 

 
 

а– general scheme; b - cross-section across the isotropic plane 
Fig. 1 - Sloped-layered rock massif 

             
where the strain coefficients 𝑎𝑎ij (𝑖𝑖, 𝑗𝑗 = 1 − 6) are equal: 

    𝑎𝑎11 = 𝐸𝐸1
−1cos4𝜙𝜙 + 0.25(𝐺𝐺2

−1 − 2𝜈𝜈2𝐸𝐸1
−1) sin22𝜙𝜙 + 𝐸𝐸2

−1sin4𝜙𝜙,    𝑎𝑎22 = 𝐸𝐸1
−1, 

    𝑎𝑎33 = 𝐸𝐸1
−1sin4𝜙𝜙 + 0.25(𝐺𝐺2

−1 − 2 𝜈𝜈2𝐸𝐸1
−1) sin22𝜙𝜙 + 𝐸𝐸2

−1cos4𝜙𝜙, 
    𝑎𝑎44 = 2 𝐸𝐸1

−1(1 + 𝜈𝜈1) sin2𝜙𝜙 + 𝐺𝐺2
−2cos2𝜙𝜙, 𝑎𝑎55 = 𝐺𝐺2

−1 + (𝐸𝐸1
−1(1 + 2 𝜈𝜈2) + 𝐸𝐸2

−1 − 𝐺𝐺2
−1) sin22𝜙𝜙, 

             𝑎𝑎66 = 2 𝐸𝐸1
−1(1 + 𝜈𝜈1) cos2𝜙𝜙 + 𝐺𝐺2

−1sin2𝜙𝜙, 𝑎𝑎12 = −𝐸𝐸1
−1𝜈𝜈1cos2𝜙𝜙 + 𝐺𝐺2

−1𝜈𝜈2 sin2𝜙𝜙,                               
             𝑎𝑎13 = −𝐸𝐸1

−1𝜈𝜈2 + 0.25(𝐸𝐸1
−1(1 + 2 𝜈𝜈2) + 𝐸𝐸2

−1 − 𝐺𝐺2
−1) sin22𝜙𝜙,                                              (2) 

             𝑎𝑎15 = [𝐸𝐸1
−1(1 + 𝜈𝜈2) cos2𝜙𝜙 − (𝐸𝐸2

−1 + 𝐸𝐸1
−1𝜈𝜈2) sin2𝜙𝜙 − 0.5 𝐺𝐺2

−1cos2𝜙𝜙] sin2𝜙𝜙, 
             𝑎𝑎23 = −𝐸𝐸1

−1𝜈𝜈1sin2𝜙𝜙 − 𝐸𝐸1
−1𝜈𝜈2cos2𝜙𝜙, 𝑎𝑎25 = −𝐸𝐸1

−1(𝜈𝜈1 − 𝜈𝜈2) sin2𝜙𝜙, 
             𝑎𝑎35 = [𝐸𝐸1

−1(1 + 𝜈𝜈2) sin2𝜙𝜙 − (𝐸𝐸2
−1 + 𝐸𝐸1

−1𝜈𝜈2) cos2𝜙𝜙 + 0.5 𝐺𝐺2
−1cos2𝜙𝜙] sin2𝜙𝜙, 

             𝑎𝑎46 = −0.5 (𝐺𝐺2
−1 − 2 𝐸𝐸1

−1(1 + 𝜈𝜈1))  sin2𝜙𝜙, 
and the remaining strain coefficients are zero. 

Here Е1 and Е2- are elastic moduli in the isotropy plane and perpendicular to it; 𝜈𝜈1 and 𝜈𝜈2- 
Poisson's coefficients in the isotropy plane and perpendicular to it during compression-expansion in 
this plane; 𝐺𝐺2- is shear modulus for planes normal to the isotropy plane. The values Е1,Е2, 𝜈𝜈1, 𝜈𝜈2are 
found from uniaxial compression experiments on rock samples parallel and perpendicular to the 
layering. First, the modulus of elasticity Е𝛼𝛼 in compression of the sample at an angle 𝛼𝛼 to the 
layering is determined from the formula: 

𝐸𝐸𝛼𝛼 = (𝐸𝐸1
−1cos4𝜙𝜙 + 0.25 (𝐺𝐺2

−1 − 2 𝐸𝐸1
−1𝜈𝜈2) sin22𝛼𝛼 + 𝐸𝐸2

−1sin4𝛼𝛼) −1,         
and then the shear modulus 𝐺𝐺2by the formula: 

𝐺𝐺2 = sin22𝛼𝛼 [0.25 (𝐸𝐸𝛼𝛼
−1 − 𝐸𝐸1

−1cos4𝛼𝛼 − 𝐸𝐸2
−1sin4𝛼𝛼 + 0.5 𝐸𝐸1

−1𝜈𝜈2 sin22𝛼𝛼)] −1. 
Determination of the stress components in an intact continuous rock massif, from now on 

referred to as the main ones, is hypothetical in nature. A.N. Dinnik's hypothesis about the absence 
of horizontal displacements in an intact thickness under the action of its own weight only, which is 
equivalent to the absence of expansion of the rock massif in the horizontal directions, is widely 
used. Then, taking 𝜎𝜎𝑧𝑧 = −𝛾𝛾𝛾𝛾and using (1), we obtain 

𝜎𝜎𝑥𝑥 = 𝜆𝜆𝑥𝑥 𝜎𝜎𝑧𝑧, 𝜎𝜎𝑦𝑦 = 𝜆𝜆𝑦𝑦 𝜎𝜎𝑧𝑧, 𝜏𝜏𝑥𝑥𝑥𝑥 = 𝜆𝜆𝑥𝑥𝑥𝑥 𝜎𝜎𝑧𝑧, 𝜏𝜏𝑦𝑦𝑦𝑦 = 𝜏𝜏𝑥𝑥𝑥𝑥 = 0. 
Here 𝜆𝜆𝑥𝑥, 𝜆𝜆𝑦𝑦- coefficients of lateral pressure across and along the isotropy plane; 𝛾𝛾, Н- 

volumetric weight of the rock mass and depth of the point in question. At horizontal layering 
(isotropy plane), when 𝜙𝜙 = 0, we have: 

                         𝜆𝜆𝑥𝑥 = 𝜆𝜆𝑦𝑦 = 𝜈𝜈2 (1 − 𝜈𝜈1)−1; 𝜆𝜆𝑥𝑥𝑥𝑥 = 0.                                                (3) 
For an isotropic medium (𝐸𝐸1 = 𝐸𝐸2 = 𝐸𝐸, 𝐺𝐺2 = 𝐺𝐺, 𝜈𝜈1 = 𝜈𝜈2 = 𝜈𝜈) we obtain the well-known A.N. 

Dinnik's coefficient: 

and the remaining strain coefficients are zero.
Here E1 and E2- are elastic moduli in the isotropy plane and perpendicular to it; 

v1 and v2 - Poisson’s coefficients in the isotropy plane and perpendicular to it during 
compression-expansion in this plane; G2- is shear modulus for planes normal to 
the isotropy plane. The values E1, E2, v1, v2 are found from uniaxial compression 
experiments on rock samples parallel and perpendicular to the layering. First, the 
modulus of elasticity Ea in compression of the sample at an angle a to the layering 
is determined from the formula:

      𝜀𝜀𝑧𝑧 = 𝑎𝑎13𝜎𝜎𝑥𝑥 + 𝑎𝑎23𝜎𝜎𝑦𝑦 + 𝑎𝑎33𝜎𝜎𝑧𝑧 + 𝑎𝑎35𝜏𝜏xz,           𝛾𝛾yz = 𝑎𝑎44 𝜏𝜏yz + 𝑎𝑎46 𝜏𝜏xy                                (1) 
           𝛾𝛾xy = 𝑎𝑎46𝜏𝜏yz + 𝑎𝑎66𝜏𝜏xy,                                      𝛾𝛾xz = 𝑎𝑎15𝜎𝜎𝑥𝑥 + 𝑎𝑎25𝜎𝜎𝑦𝑦 + 𝑎𝑎35𝜎𝜎𝑧𝑧 + 𝑎𝑎55𝜏𝜏xz 

 
 

а– general scheme; b - cross-section across the isotropic plane 
Fig. 1 - Sloped-layered rock massif 

             
where the strain coefficients 𝑎𝑎ij (𝑖𝑖, 𝑗𝑗 = 1 − 6) are equal: 

    𝑎𝑎11 = 𝐸𝐸1
−1cos4𝜙𝜙 + 0.25(𝐺𝐺2

−1 − 2𝜈𝜈2𝐸𝐸1
−1) sin22𝜙𝜙 + 𝐸𝐸2

−1sin4𝜙𝜙,    𝑎𝑎22 = 𝐸𝐸1
−1, 

    𝑎𝑎33 = 𝐸𝐸1
−1sin4𝜙𝜙 + 0.25(𝐺𝐺2

−1 − 2 𝜈𝜈2𝐸𝐸1
−1) sin22𝜙𝜙 + 𝐸𝐸2

−1cos4𝜙𝜙, 
    𝑎𝑎44 = 2 𝐸𝐸1

−1(1 + 𝜈𝜈1) sin2𝜙𝜙 + 𝐺𝐺2
−2cos2𝜙𝜙, 𝑎𝑎55 = 𝐺𝐺2

−1 + (𝐸𝐸1
−1(1 + 2 𝜈𝜈2) + 𝐸𝐸2

−1 − 𝐺𝐺2
−1) sin22𝜙𝜙, 

             𝑎𝑎66 = 2 𝐸𝐸1
−1(1 + 𝜈𝜈1) cos2𝜙𝜙 + 𝐺𝐺2

−1sin2𝜙𝜙, 𝑎𝑎12 = −𝐸𝐸1
−1𝜈𝜈1cos2𝜙𝜙 + 𝐺𝐺2

−1𝜈𝜈2 sin2𝜙𝜙,                               
             𝑎𝑎13 = −𝐸𝐸1

−1𝜈𝜈2 + 0.25(𝐸𝐸1
−1(1 + 2 𝜈𝜈2) + 𝐸𝐸2

−1 − 𝐺𝐺2
−1) sin22𝜙𝜙,                                              (2) 

             𝑎𝑎15 = [𝐸𝐸1
−1(1 + 𝜈𝜈2) cos2𝜙𝜙 − (𝐸𝐸2

−1 + 𝐸𝐸1
−1𝜈𝜈2) sin2𝜙𝜙 − 0.5 𝐺𝐺2

−1cos2𝜙𝜙] sin2𝜙𝜙, 
             𝑎𝑎23 = −𝐸𝐸1

−1𝜈𝜈1sin2𝜙𝜙 − 𝐸𝐸1
−1𝜈𝜈2cos2𝜙𝜙, 𝑎𝑎25 = −𝐸𝐸1

−1(𝜈𝜈1 − 𝜈𝜈2) sin2𝜙𝜙, 
             𝑎𝑎35 = [𝐸𝐸1

−1(1 + 𝜈𝜈2) sin2𝜙𝜙 − (𝐸𝐸2
−1 + 𝐸𝐸1

−1𝜈𝜈2) cos2𝜙𝜙 + 0.5 𝐺𝐺2
−1cos2𝜙𝜙] sin2𝜙𝜙, 

             𝑎𝑎46 = −0.5 (𝐺𝐺2
−1 − 2 𝐸𝐸1

−1(1 + 𝜈𝜈1))  sin2𝜙𝜙, 
and the remaining strain coefficients are zero. 

Here Е1 and Е2- are elastic moduli in the isotropy plane and perpendicular to it; 𝜈𝜈1 and 𝜈𝜈2- 
Poisson's coefficients in the isotropy plane and perpendicular to it during compression-expansion in 
this plane; 𝐺𝐺2- is shear modulus for planes normal to the isotropy plane. The values Е1,Е2, 𝜈𝜈1, 𝜈𝜈2are 
found from uniaxial compression experiments on rock samples parallel and perpendicular to the 
layering. First, the modulus of elasticity Е𝛼𝛼 in compression of the sample at an angle 𝛼𝛼 to the 
layering is determined from the formula: 

𝐸𝐸𝛼𝛼 = (𝐸𝐸1
−1cos4𝜙𝜙 + 0.25 (𝐺𝐺2

−1 − 2 𝐸𝐸1
−1𝜈𝜈2) sin22𝛼𝛼 + 𝐸𝐸2

−1sin4𝛼𝛼) −1,         
and then the shear modulus 𝐺𝐺2by the formula: 

𝐺𝐺2 = sin22𝛼𝛼 [0.25 (𝐸𝐸𝛼𝛼
−1 − 𝐸𝐸1

−1cos4𝛼𝛼 − 𝐸𝐸2
−1sin4𝛼𝛼 + 0.5 𝐸𝐸1

−1𝜈𝜈2 sin22𝛼𝛼)] −1. 
Determination of the stress components in an intact continuous rock massif, from now on 

referred to as the main ones, is hypothetical in nature. A.N. Dinnik's hypothesis about the absence 
of horizontal displacements in an intact thickness under the action of its own weight only, which is 
equivalent to the absence of expansion of the rock massif in the horizontal directions, is widely 
used. Then, taking 𝜎𝜎𝑧𝑧 = −𝛾𝛾𝛾𝛾and using (1), we obtain 

𝜎𝜎𝑥𝑥 = 𝜆𝜆𝑥𝑥 𝜎𝜎𝑧𝑧, 𝜎𝜎𝑦𝑦 = 𝜆𝜆𝑦𝑦 𝜎𝜎𝑧𝑧, 𝜏𝜏𝑥𝑥𝑥𝑥 = 𝜆𝜆𝑥𝑥𝑥𝑥 𝜎𝜎𝑧𝑧, 𝜏𝜏𝑦𝑦𝑦𝑦 = 𝜏𝜏𝑥𝑥𝑥𝑥 = 0. 
Here 𝜆𝜆𝑥𝑥, 𝜆𝜆𝑦𝑦- coefficients of lateral pressure across and along the isotropy plane; 𝛾𝛾, Н- 

volumetric weight of the rock mass and depth of the point in question. At horizontal layering 
(isotropy plane), when 𝜙𝜙 = 0, we have: 

                         𝜆𝜆𝑥𝑥 = 𝜆𝜆𝑦𝑦 = 𝜈𝜈2 (1 − 𝜈𝜈1)−1; 𝜆𝜆𝑥𝑥𝑥𝑥 = 0.                                                (3) 
For an isotropic medium (𝐸𝐸1 = 𝐸𝐸2 = 𝐸𝐸, 𝐺𝐺2 = 𝐺𝐺, 𝜈𝜈1 = 𝜈𝜈2 = 𝜈𝜈) we obtain the well-known A.N. 

Dinnik's coefficient: 

,        

and then the shear modulus G2 by the formula:

      𝜀𝜀𝑧𝑧 = 𝑎𝑎13𝜎𝜎𝑥𝑥 + 𝑎𝑎23𝜎𝜎𝑦𝑦 + 𝑎𝑎33𝜎𝜎𝑧𝑧 + 𝑎𝑎35𝜏𝜏xz,           𝛾𝛾yz = 𝑎𝑎44 𝜏𝜏yz + 𝑎𝑎46 𝜏𝜏xy                                (1) 
           𝛾𝛾xy = 𝑎𝑎46𝜏𝜏yz + 𝑎𝑎66𝜏𝜏xy,                                      𝛾𝛾xz = 𝑎𝑎15𝜎𝜎𝑥𝑥 + 𝑎𝑎25𝜎𝜎𝑦𝑦 + 𝑎𝑎35𝜎𝜎𝑧𝑧 + 𝑎𝑎55𝜏𝜏xz 

 
 

а– general scheme; b - cross-section across the isotropic plane 
Fig. 1 - Sloped-layered rock massif 

             
where the strain coefficients 𝑎𝑎ij (𝑖𝑖, 𝑗𝑗 = 1 − 6) are equal: 

    𝑎𝑎11 = 𝐸𝐸1
−1cos4𝜙𝜙 + 0.25(𝐺𝐺2

−1 − 2𝜈𝜈2𝐸𝐸1
−1) sin22𝜙𝜙 + 𝐸𝐸2

−1sin4𝜙𝜙,    𝑎𝑎22 = 𝐸𝐸1
−1, 

    𝑎𝑎33 = 𝐸𝐸1
−1sin4𝜙𝜙 + 0.25(𝐺𝐺2

−1 − 2 𝜈𝜈2𝐸𝐸1
−1) sin22𝜙𝜙 + 𝐸𝐸2

−1cos4𝜙𝜙, 
    𝑎𝑎44 = 2 𝐸𝐸1

−1(1 + 𝜈𝜈1) sin2𝜙𝜙 + 𝐺𝐺2
−2cos2𝜙𝜙, 𝑎𝑎55 = 𝐺𝐺2

−1 + (𝐸𝐸1
−1(1 + 2 𝜈𝜈2) + 𝐸𝐸2

−1 − 𝐺𝐺2
−1) sin22𝜙𝜙, 

             𝑎𝑎66 = 2 𝐸𝐸1
−1(1 + 𝜈𝜈1) cos2𝜙𝜙 + 𝐺𝐺2

−1sin2𝜙𝜙, 𝑎𝑎12 = −𝐸𝐸1
−1𝜈𝜈1cos2𝜙𝜙 + 𝐺𝐺2

−1𝜈𝜈2 sin2𝜙𝜙,                               
             𝑎𝑎13 = −𝐸𝐸1

−1𝜈𝜈2 + 0.25(𝐸𝐸1
−1(1 + 2 𝜈𝜈2) + 𝐸𝐸2

−1 − 𝐺𝐺2
−1) sin22𝜙𝜙,                                              (2) 

             𝑎𝑎15 = [𝐸𝐸1
−1(1 + 𝜈𝜈2) cos2𝜙𝜙 − (𝐸𝐸2

−1 + 𝐸𝐸1
−1𝜈𝜈2) sin2𝜙𝜙 − 0.5 𝐺𝐺2

−1cos2𝜙𝜙] sin2𝜙𝜙, 
             𝑎𝑎23 = −𝐸𝐸1

−1𝜈𝜈1sin2𝜙𝜙 − 𝐸𝐸1
−1𝜈𝜈2cos2𝜙𝜙, 𝑎𝑎25 = −𝐸𝐸1

−1(𝜈𝜈1 − 𝜈𝜈2) sin2𝜙𝜙, 
             𝑎𝑎35 = [𝐸𝐸1

−1(1 + 𝜈𝜈2) sin2𝜙𝜙 − (𝐸𝐸2
−1 + 𝐸𝐸1

−1𝜈𝜈2) cos2𝜙𝜙 + 0.5 𝐺𝐺2
−1cos2𝜙𝜙] sin2𝜙𝜙, 

             𝑎𝑎46 = −0.5 (𝐺𝐺2
−1 − 2 𝐸𝐸1

−1(1 + 𝜈𝜈1))  sin2𝜙𝜙, 
and the remaining strain coefficients are zero. 

Here Е1 and Е2- are elastic moduli in the isotropy plane and perpendicular to it; 𝜈𝜈1 and 𝜈𝜈2- 
Poisson's coefficients in the isotropy plane and perpendicular to it during compression-expansion in 
this plane; 𝐺𝐺2- is shear modulus for planes normal to the isotropy plane. The values Е1,Е2, 𝜈𝜈1, 𝜈𝜈2are 
found from uniaxial compression experiments on rock samples parallel and perpendicular to the 
layering. First, the modulus of elasticity Е𝛼𝛼 in compression of the sample at an angle 𝛼𝛼 to the 
layering is determined from the formula: 

𝐸𝐸𝛼𝛼 = (𝐸𝐸1
−1cos4𝜙𝜙 + 0.25 (𝐺𝐺2

−1 − 2 𝐸𝐸1
−1𝜈𝜈2) sin22𝛼𝛼 + 𝐸𝐸2

−1sin4𝛼𝛼) −1,         
and then the shear modulus 𝐺𝐺2by the formula: 

𝐺𝐺2 = sin22𝛼𝛼 [0.25 (𝐸𝐸𝛼𝛼
−1 − 𝐸𝐸1

−1cos4𝛼𝛼 − 𝐸𝐸2
−1sin4𝛼𝛼 + 0.5 𝐸𝐸1

−1𝜈𝜈2 sin22𝛼𝛼)] −1. 
Determination of the stress components in an intact continuous rock massif, from now on 

referred to as the main ones, is hypothetical in nature. A.N. Dinnik's hypothesis about the absence 
of horizontal displacements in an intact thickness under the action of its own weight only, which is 
equivalent to the absence of expansion of the rock massif in the horizontal directions, is widely 
used. Then, taking 𝜎𝜎𝑧𝑧 = −𝛾𝛾𝛾𝛾and using (1), we obtain 

𝜎𝜎𝑥𝑥 = 𝜆𝜆𝑥𝑥 𝜎𝜎𝑧𝑧, 𝜎𝜎𝑦𝑦 = 𝜆𝜆𝑦𝑦 𝜎𝜎𝑧𝑧, 𝜏𝜏𝑥𝑥𝑥𝑥 = 𝜆𝜆𝑥𝑥𝑥𝑥 𝜎𝜎𝑧𝑧, 𝜏𝜏𝑦𝑦𝑦𝑦 = 𝜏𝜏𝑥𝑥𝑥𝑥 = 0. 
Here 𝜆𝜆𝑥𝑥, 𝜆𝜆𝑦𝑦- coefficients of lateral pressure across and along the isotropy plane; 𝛾𝛾, Н- 

volumetric weight of the rock mass and depth of the point in question. At horizontal layering 
(isotropy plane), when 𝜙𝜙 = 0, we have: 

                         𝜆𝜆𝑥𝑥 = 𝜆𝜆𝑦𝑦 = 𝜈𝜈2 (1 − 𝜈𝜈1)−1; 𝜆𝜆𝑥𝑥𝑥𝑥 = 0.                                                (3) 
For an isotropic medium (𝐸𝐸1 = 𝐸𝐸2 = 𝐸𝐸, 𝐺𝐺2 = 𝐺𝐺, 𝜈𝜈1 = 𝜈𝜈2 = 𝜈𝜈) we obtain the well-known A.N. 

Dinnik's coefficient: 

.

Determination of the stress components in an intact continuous rock massif, 
from now on referred to as the main ones, is hypothetical in nature. A.N. Dinnik’s 
hypothesis about the absence of horizontal displacements in an intact thickness 
under the action of its own weight only, which is equivalent to the absence of 
expansion of the rock massif in the horizontal directions, is widely used. Then, 
taking 

      𝜀𝜀𝑧𝑧 = 𝑎𝑎13𝜎𝜎𝑥𝑥 + 𝑎𝑎23𝜎𝜎𝑦𝑦 + 𝑎𝑎33𝜎𝜎𝑧𝑧 + 𝑎𝑎35𝜏𝜏xz,           𝛾𝛾yz = 𝑎𝑎44 𝜏𝜏yz + 𝑎𝑎46 𝜏𝜏xy                                (1) 
           𝛾𝛾xy = 𝑎𝑎46𝜏𝜏yz + 𝑎𝑎66𝜏𝜏xy,                                      𝛾𝛾xz = 𝑎𝑎15𝜎𝜎𝑥𝑥 + 𝑎𝑎25𝜎𝜎𝑦𝑦 + 𝑎𝑎35𝜎𝜎𝑧𝑧 + 𝑎𝑎55𝜏𝜏xz 

 
 

а– general scheme; b - cross-section across the isotropic plane 
Fig. 1 - Sloped-layered rock massif 

             
where the strain coefficients 𝑎𝑎ij (𝑖𝑖, 𝑗𝑗 = 1 − 6) are equal: 

    𝑎𝑎11 = 𝐸𝐸1
−1cos4𝜙𝜙 + 0.25(𝐺𝐺2

−1 − 2𝜈𝜈2𝐸𝐸1
−1) sin22𝜙𝜙 + 𝐸𝐸2

−1sin4𝜙𝜙,    𝑎𝑎22 = 𝐸𝐸1
−1, 

    𝑎𝑎33 = 𝐸𝐸1
−1sin4𝜙𝜙 + 0.25(𝐺𝐺2

−1 − 2 𝜈𝜈2𝐸𝐸1
−1) sin22𝜙𝜙 + 𝐸𝐸2

−1cos4𝜙𝜙, 
    𝑎𝑎44 = 2 𝐸𝐸1

−1(1 + 𝜈𝜈1) sin2𝜙𝜙 + 𝐺𝐺2
−2cos2𝜙𝜙, 𝑎𝑎55 = 𝐺𝐺2

−1 + (𝐸𝐸1
−1(1 + 2 𝜈𝜈2) + 𝐸𝐸2

−1 − 𝐺𝐺2
−1) sin22𝜙𝜙, 

             𝑎𝑎66 = 2 𝐸𝐸1
−1(1 + 𝜈𝜈1) cos2𝜙𝜙 + 𝐺𝐺2

−1sin2𝜙𝜙, 𝑎𝑎12 = −𝐸𝐸1
−1𝜈𝜈1cos2𝜙𝜙 + 𝐺𝐺2

−1𝜈𝜈2 sin2𝜙𝜙,                               
             𝑎𝑎13 = −𝐸𝐸1

−1𝜈𝜈2 + 0.25(𝐸𝐸1
−1(1 + 2 𝜈𝜈2) + 𝐸𝐸2

−1 − 𝐺𝐺2
−1) sin22𝜙𝜙,                                              (2) 

             𝑎𝑎15 = [𝐸𝐸1
−1(1 + 𝜈𝜈2) cos2𝜙𝜙 − (𝐸𝐸2

−1 + 𝐸𝐸1
−1𝜈𝜈2) sin2𝜙𝜙 − 0.5 𝐺𝐺2

−1cos2𝜙𝜙] sin2𝜙𝜙, 
             𝑎𝑎23 = −𝐸𝐸1

−1𝜈𝜈1sin2𝜙𝜙 − 𝐸𝐸1
−1𝜈𝜈2cos2𝜙𝜙, 𝑎𝑎25 = −𝐸𝐸1

−1(𝜈𝜈1 − 𝜈𝜈2) sin2𝜙𝜙, 
             𝑎𝑎35 = [𝐸𝐸1

−1(1 + 𝜈𝜈2) sin2𝜙𝜙 − (𝐸𝐸2
−1 + 𝐸𝐸1

−1𝜈𝜈2) cos2𝜙𝜙 + 0.5 𝐺𝐺2
−1cos2𝜙𝜙] sin2𝜙𝜙, 

             𝑎𝑎46 = −0.5 (𝐺𝐺2
−1 − 2 𝐸𝐸1

−1(1 + 𝜈𝜈1))  sin2𝜙𝜙, 
and the remaining strain coefficients are zero. 

Here Е1 and Е2- are elastic moduli in the isotropy plane and perpendicular to it; 𝜈𝜈1 and 𝜈𝜈2- 
Poisson's coefficients in the isotropy plane and perpendicular to it during compression-expansion in 
this plane; 𝐺𝐺2- is shear modulus for planes normal to the isotropy plane. The values Е1,Е2, 𝜈𝜈1, 𝜈𝜈2are 
found from uniaxial compression experiments on rock samples parallel and perpendicular to the 
layering. First, the modulus of elasticity Е𝛼𝛼 in compression of the sample at an angle 𝛼𝛼 to the 
layering is determined from the formula: 

𝐸𝐸𝛼𝛼 = (𝐸𝐸1
−1cos4𝜙𝜙 + 0.25 (𝐺𝐺2

−1 − 2 𝐸𝐸1
−1𝜈𝜈2) sin22𝛼𝛼 + 𝐸𝐸2

−1sin4𝛼𝛼) −1,         
and then the shear modulus 𝐺𝐺2by the formula: 

𝐺𝐺2 = sin22𝛼𝛼 [0.25 (𝐸𝐸𝛼𝛼
−1 − 𝐸𝐸1

−1cos4𝛼𝛼 − 𝐸𝐸2
−1sin4𝛼𝛼 + 0.5 𝐸𝐸1

−1𝜈𝜈2 sin22𝛼𝛼)] −1. 
Determination of the stress components in an intact continuous rock massif, from now on 

referred to as the main ones, is hypothetical in nature. A.N. Dinnik's hypothesis about the absence 
of horizontal displacements in an intact thickness under the action of its own weight only, which is 
equivalent to the absence of expansion of the rock massif in the horizontal directions, is widely 
used. Then, taking 𝜎𝜎𝑧𝑧 = −𝛾𝛾𝛾𝛾and using (1), we obtain 

𝜎𝜎𝑥𝑥 = 𝜆𝜆𝑥𝑥 𝜎𝜎𝑧𝑧, 𝜎𝜎𝑦𝑦 = 𝜆𝜆𝑦𝑦 𝜎𝜎𝑧𝑧, 𝜏𝜏𝑥𝑥𝑥𝑥 = 𝜆𝜆𝑥𝑥𝑥𝑥 𝜎𝜎𝑧𝑧, 𝜏𝜏𝑦𝑦𝑦𝑦 = 𝜏𝜏𝑥𝑥𝑥𝑥 = 0. 
Here 𝜆𝜆𝑥𝑥, 𝜆𝜆𝑦𝑦- coefficients of lateral pressure across and along the isotropy plane; 𝛾𝛾, Н- 

volumetric weight of the rock mass and depth of the point in question. At horizontal layering 
(isotropy plane), when 𝜙𝜙 = 0, we have: 

                         𝜆𝜆𝑥𝑥 = 𝜆𝜆𝑦𝑦 = 𝜈𝜈2 (1 − 𝜈𝜈1)−1; 𝜆𝜆𝑥𝑥𝑥𝑥 = 0.                                                (3) 
For an isotropic medium (𝐸𝐸1 = 𝐸𝐸2 = 𝐸𝐸, 𝐺𝐺2 = 𝐺𝐺, 𝜈𝜈1 = 𝜈𝜈2 = 𝜈𝜈) we obtain the well-known A.N. 

Dinnik's coefficient: 

 and using (1), we obtain

      𝜀𝜀𝑧𝑧 = 𝑎𝑎13𝜎𝜎𝑥𝑥 + 𝑎𝑎23𝜎𝜎𝑦𝑦 + 𝑎𝑎33𝜎𝜎𝑧𝑧 + 𝑎𝑎35𝜏𝜏xz,           𝛾𝛾yz = 𝑎𝑎44 𝜏𝜏yz + 𝑎𝑎46 𝜏𝜏xy                                (1) 
           𝛾𝛾xy = 𝑎𝑎46𝜏𝜏yz + 𝑎𝑎66𝜏𝜏xy,                                      𝛾𝛾xz = 𝑎𝑎15𝜎𝜎𝑥𝑥 + 𝑎𝑎25𝜎𝜎𝑦𝑦 + 𝑎𝑎35𝜎𝜎𝑧𝑧 + 𝑎𝑎55𝜏𝜏xz 

 
 

а– general scheme; b - cross-section across the isotropic plane 
Fig. 1 - Sloped-layered rock massif 

             
where the strain coefficients 𝑎𝑎ij (𝑖𝑖, 𝑗𝑗 = 1 − 6) are equal: 

    𝑎𝑎11 = 𝐸𝐸1
−1cos4𝜙𝜙 + 0.25(𝐺𝐺2

−1 − 2𝜈𝜈2𝐸𝐸1
−1) sin22𝜙𝜙 + 𝐸𝐸2

−1sin4𝜙𝜙,    𝑎𝑎22 = 𝐸𝐸1
−1, 

    𝑎𝑎33 = 𝐸𝐸1
−1sin4𝜙𝜙 + 0.25(𝐺𝐺2

−1 − 2 𝜈𝜈2𝐸𝐸1
−1) sin22𝜙𝜙 + 𝐸𝐸2

−1cos4𝜙𝜙, 
    𝑎𝑎44 = 2 𝐸𝐸1

−1(1 + 𝜈𝜈1) sin2𝜙𝜙 + 𝐺𝐺2
−2cos2𝜙𝜙, 𝑎𝑎55 = 𝐺𝐺2

−1 + (𝐸𝐸1
−1(1 + 2 𝜈𝜈2) + 𝐸𝐸2

−1 − 𝐺𝐺2
−1) sin22𝜙𝜙, 

             𝑎𝑎66 = 2 𝐸𝐸1
−1(1 + 𝜈𝜈1) cos2𝜙𝜙 + 𝐺𝐺2

−1sin2𝜙𝜙, 𝑎𝑎12 = −𝐸𝐸1
−1𝜈𝜈1cos2𝜙𝜙 + 𝐺𝐺2

−1𝜈𝜈2 sin2𝜙𝜙,                               
             𝑎𝑎13 = −𝐸𝐸1

−1𝜈𝜈2 + 0.25(𝐸𝐸1
−1(1 + 2 𝜈𝜈2) + 𝐸𝐸2

−1 − 𝐺𝐺2
−1) sin22𝜙𝜙,                                              (2) 

             𝑎𝑎15 = [𝐸𝐸1
−1(1 + 𝜈𝜈2) cos2𝜙𝜙 − (𝐸𝐸2

−1 + 𝐸𝐸1
−1𝜈𝜈2) sin2𝜙𝜙 − 0.5 𝐺𝐺2

−1cos2𝜙𝜙] sin2𝜙𝜙, 
             𝑎𝑎23 = −𝐸𝐸1

−1𝜈𝜈1sin2𝜙𝜙 − 𝐸𝐸1
−1𝜈𝜈2cos2𝜙𝜙, 𝑎𝑎25 = −𝐸𝐸1

−1(𝜈𝜈1 − 𝜈𝜈2) sin2𝜙𝜙, 
             𝑎𝑎35 = [𝐸𝐸1

−1(1 + 𝜈𝜈2) sin2𝜙𝜙 − (𝐸𝐸2
−1 + 𝐸𝐸1

−1𝜈𝜈2) cos2𝜙𝜙 + 0.5 𝐺𝐺2
−1cos2𝜙𝜙] sin2𝜙𝜙, 

             𝑎𝑎46 = −0.5 (𝐺𝐺2
−1 − 2 𝐸𝐸1

−1(1 + 𝜈𝜈1))  sin2𝜙𝜙, 
and the remaining strain coefficients are zero. 

Here Е1 and Е2- are elastic moduli in the isotropy plane and perpendicular to it; 𝜈𝜈1 and 𝜈𝜈2- 
Poisson's coefficients in the isotropy plane and perpendicular to it during compression-expansion in 
this plane; 𝐺𝐺2- is shear modulus for planes normal to the isotropy plane. The values Е1,Е2, 𝜈𝜈1, 𝜈𝜈2are 
found from uniaxial compression experiments on rock samples parallel and perpendicular to the 
layering. First, the modulus of elasticity Е𝛼𝛼 in compression of the sample at an angle 𝛼𝛼 to the 
layering is determined from the formula: 

𝐸𝐸𝛼𝛼 = (𝐸𝐸1
−1cos4𝜙𝜙 + 0.25 (𝐺𝐺2

−1 − 2 𝐸𝐸1
−1𝜈𝜈2) sin22𝛼𝛼 + 𝐸𝐸2

−1sin4𝛼𝛼) −1,         
and then the shear modulus 𝐺𝐺2by the formula: 

𝐺𝐺2 = sin22𝛼𝛼 [0.25 (𝐸𝐸𝛼𝛼
−1 − 𝐸𝐸1

−1cos4𝛼𝛼 − 𝐸𝐸2
−1sin4𝛼𝛼 + 0.5 𝐸𝐸1

−1𝜈𝜈2 sin22𝛼𝛼)] −1. 
Determination of the stress components in an intact continuous rock massif, from now on 

referred to as the main ones, is hypothetical in nature. A.N. Dinnik's hypothesis about the absence 
of horizontal displacements in an intact thickness under the action of its own weight only, which is 
equivalent to the absence of expansion of the rock massif in the horizontal directions, is widely 
used. Then, taking 𝜎𝜎𝑧𝑧 = −𝛾𝛾𝛾𝛾and using (1), we obtain 

𝜎𝜎𝑥𝑥 = 𝜆𝜆𝑥𝑥 𝜎𝜎𝑧𝑧, 𝜎𝜎𝑦𝑦 = 𝜆𝜆𝑦𝑦 𝜎𝜎𝑧𝑧, 𝜏𝜏𝑥𝑥𝑥𝑥 = 𝜆𝜆𝑥𝑥𝑥𝑥 𝜎𝜎𝑧𝑧, 𝜏𝜏𝑦𝑦𝑦𝑦 = 𝜏𝜏𝑥𝑥𝑥𝑥 = 0. 
Here 𝜆𝜆𝑥𝑥, 𝜆𝜆𝑦𝑦- coefficients of lateral pressure across and along the isotropy plane; 𝛾𝛾, Н- 

volumetric weight of the rock mass and depth of the point in question. At horizontal layering 
(isotropy plane), when 𝜙𝜙 = 0, we have: 

                         𝜆𝜆𝑥𝑥 = 𝜆𝜆𝑦𝑦 = 𝜈𝜈2 (1 − 𝜈𝜈1)−1; 𝜆𝜆𝑥𝑥𝑥𝑥 = 0.                                                (3) 
For an isotropic medium (𝐸𝐸1 = 𝐸𝐸2 = 𝐸𝐸, 𝐺𝐺2 = 𝐺𝐺, 𝜈𝜈1 = 𝜈𝜈2 = 𝜈𝜈) we obtain the well-known A.N. 

Dinnik's coefficient: 

.

Here 

      𝜀𝜀𝑧𝑧 = 𝑎𝑎13𝜎𝜎𝑥𝑥 + 𝑎𝑎23𝜎𝜎𝑦𝑦 + 𝑎𝑎33𝜎𝜎𝑧𝑧 + 𝑎𝑎35𝜏𝜏xz,           𝛾𝛾yz = 𝑎𝑎44 𝜏𝜏yz + 𝑎𝑎46 𝜏𝜏xy                                (1) 
           𝛾𝛾xy = 𝑎𝑎46𝜏𝜏yz + 𝑎𝑎66𝜏𝜏xy,                                      𝛾𝛾xz = 𝑎𝑎15𝜎𝜎𝑥𝑥 + 𝑎𝑎25𝜎𝜎𝑦𝑦 + 𝑎𝑎35𝜎𝜎𝑧𝑧 + 𝑎𝑎55𝜏𝜏xz 

 
 

а– general scheme; b - cross-section across the isotropic plane 
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where the strain coefficients 𝑎𝑎ij (𝑖𝑖, 𝑗𝑗 = 1 − 6) are equal: 

    𝑎𝑎11 = 𝐸𝐸1
−1cos4𝜙𝜙 + 0.25(𝐺𝐺2

−1 − 2𝜈𝜈2𝐸𝐸1
−1) sin22𝜙𝜙 + 𝐸𝐸2

−1sin4𝜙𝜙,    𝑎𝑎22 = 𝐸𝐸1
−1, 

    𝑎𝑎33 = 𝐸𝐸1
−1sin4𝜙𝜙 + 0.25(𝐺𝐺2

−1 − 2 𝜈𝜈2𝐸𝐸1
−1) sin22𝜙𝜙 + 𝐸𝐸2

−1cos4𝜙𝜙, 
    𝑎𝑎44 = 2 𝐸𝐸1

−1(1 + 𝜈𝜈1) sin2𝜙𝜙 + 𝐺𝐺2
−2cos2𝜙𝜙, 𝑎𝑎55 = 𝐺𝐺2

−1 + (𝐸𝐸1
−1(1 + 2 𝜈𝜈2) + 𝐸𝐸2

−1 − 𝐺𝐺2
−1) sin22𝜙𝜙, 

             𝑎𝑎66 = 2 𝐸𝐸1
−1(1 + 𝜈𝜈1) cos2𝜙𝜙 + 𝐺𝐺2

−1sin2𝜙𝜙, 𝑎𝑎12 = −𝐸𝐸1
−1𝜈𝜈1cos2𝜙𝜙 + 𝐺𝐺2

−1𝜈𝜈2 sin2𝜙𝜙,                               
             𝑎𝑎13 = −𝐸𝐸1

−1𝜈𝜈2 + 0.25(𝐸𝐸1
−1(1 + 2 𝜈𝜈2) + 𝐸𝐸2

−1 − 𝐺𝐺2
−1) sin22𝜙𝜙,                                              (2) 

             𝑎𝑎15 = [𝐸𝐸1
−1(1 + 𝜈𝜈2) cos2𝜙𝜙 − (𝐸𝐸2

−1 + 𝐸𝐸1
−1𝜈𝜈2) sin2𝜙𝜙 − 0.5 𝐺𝐺2

−1cos2𝜙𝜙] sin2𝜙𝜙, 
             𝑎𝑎23 = −𝐸𝐸1

−1𝜈𝜈1sin2𝜙𝜙 − 𝐸𝐸1
−1𝜈𝜈2cos2𝜙𝜙, 𝑎𝑎25 = −𝐸𝐸1

−1(𝜈𝜈1 − 𝜈𝜈2) sin2𝜙𝜙, 
             𝑎𝑎35 = [𝐸𝐸1

−1(1 + 𝜈𝜈2) sin2𝜙𝜙 − (𝐸𝐸2
−1 + 𝐸𝐸1

−1𝜈𝜈2) cos2𝜙𝜙 + 0.5 𝐺𝐺2
−1cos2𝜙𝜙] sin2𝜙𝜙, 

             𝑎𝑎46 = −0.5 (𝐺𝐺2
−1 − 2 𝐸𝐸1

−1(1 + 𝜈𝜈1))  sin2𝜙𝜙, 
and the remaining strain coefficients are zero. 

Here Е1 and Е2- are elastic moduli in the isotropy plane and perpendicular to it; 𝜈𝜈1 and 𝜈𝜈2- 
Poisson's coefficients in the isotropy plane and perpendicular to it during compression-expansion in 
this plane; 𝐺𝐺2- is shear modulus for planes normal to the isotropy plane. The values Е1,Е2, 𝜈𝜈1, 𝜈𝜈2are 
found from uniaxial compression experiments on rock samples parallel and perpendicular to the 
layering. First, the modulus of elasticity Е𝛼𝛼 in compression of the sample at an angle 𝛼𝛼 to the 
layering is determined from the formula: 

𝐸𝐸𝛼𝛼 = (𝐸𝐸1
−1cos4𝜙𝜙 + 0.25 (𝐺𝐺2

−1 − 2 𝐸𝐸1
−1𝜈𝜈2) sin22𝛼𝛼 + 𝐸𝐸2

−1sin4𝛼𝛼) −1,         
and then the shear modulus 𝐺𝐺2by the formula: 

𝐺𝐺2 = sin22𝛼𝛼 [0.25 (𝐸𝐸𝛼𝛼
−1 − 𝐸𝐸1

−1cos4𝛼𝛼 − 𝐸𝐸2
−1sin4𝛼𝛼 + 0.5 𝐸𝐸1

−1𝜈𝜈2 sin22𝛼𝛼)] −1. 
Determination of the stress components in an intact continuous rock massif, from now on 

referred to as the main ones, is hypothetical in nature. A.N. Dinnik's hypothesis about the absence 
of horizontal displacements in an intact thickness under the action of its own weight only, which is 
equivalent to the absence of expansion of the rock massif in the horizontal directions, is widely 
used. Then, taking 𝜎𝜎𝑧𝑧 = −𝛾𝛾𝛾𝛾and using (1), we obtain 

𝜎𝜎𝑥𝑥 = 𝜆𝜆𝑥𝑥 𝜎𝜎𝑧𝑧, 𝜎𝜎𝑦𝑦 = 𝜆𝜆𝑦𝑦 𝜎𝜎𝑧𝑧, 𝜏𝜏𝑥𝑥𝑥𝑥 = 𝜆𝜆𝑥𝑥𝑥𝑥 𝜎𝜎𝑧𝑧, 𝜏𝜏𝑦𝑦𝑦𝑦 = 𝜏𝜏𝑥𝑥𝑥𝑥 = 0. 
Here 𝜆𝜆𝑥𝑥, 𝜆𝜆𝑦𝑦- coefficients of lateral pressure across and along the isotropy plane; 𝛾𝛾, Н- 

volumetric weight of the rock mass and depth of the point in question. At horizontal layering 
(isotropy plane), when 𝜙𝜙 = 0, we have: 

                         𝜆𝜆𝑥𝑥 = 𝜆𝜆𝑦𝑦 = 𝜈𝜈2 (1 − 𝜈𝜈1)−1; 𝜆𝜆𝑥𝑥𝑥𝑥 = 0.                                                (3) 
For an isotropic medium (𝐸𝐸1 = 𝐸𝐸2 = 𝐸𝐸, 𝐺𝐺2 = 𝐺𝐺, 𝜈𝜈1 = 𝜈𝜈2 = 𝜈𝜈) we obtain the well-known A.N. 

Dinnik's coefficient: 

 - coefficients of lateral pressure across and along the isotropy plane; 

      𝜀𝜀𝑧𝑧 = 𝑎𝑎13𝜎𝜎𝑥𝑥 + 𝑎𝑎23𝜎𝜎𝑦𝑦 + 𝑎𝑎33𝜎𝜎𝑧𝑧 + 𝑎𝑎35𝜏𝜏xz,           𝛾𝛾yz = 𝑎𝑎44 𝜏𝜏yz + 𝑎𝑎46 𝜏𝜏xy                                (1) 
           𝛾𝛾xy = 𝑎𝑎46𝜏𝜏yz + 𝑎𝑎66𝜏𝜏xy,                                      𝛾𝛾xz = 𝑎𝑎15𝜎𝜎𝑥𝑥 + 𝑎𝑎25𝜎𝜎𝑦𝑦 + 𝑎𝑎35𝜎𝜎𝑧𝑧 + 𝑎𝑎55𝜏𝜏xz 

 
 

а– general scheme; b - cross-section across the isotropic plane 
Fig. 1 - Sloped-layered rock massif 

             
where the strain coefficients 𝑎𝑎ij (𝑖𝑖, 𝑗𝑗 = 1 − 6) are equal: 

    𝑎𝑎11 = 𝐸𝐸1
−1cos4𝜙𝜙 + 0.25(𝐺𝐺2

−1 − 2𝜈𝜈2𝐸𝐸1
−1) sin22𝜙𝜙 + 𝐸𝐸2

−1sin4𝜙𝜙,    𝑎𝑎22 = 𝐸𝐸1
−1, 

    𝑎𝑎33 = 𝐸𝐸1
−1sin4𝜙𝜙 + 0.25(𝐺𝐺2

−1 − 2 𝜈𝜈2𝐸𝐸1
−1) sin22𝜙𝜙 + 𝐸𝐸2

−1cos4𝜙𝜙, 
    𝑎𝑎44 = 2 𝐸𝐸1

−1(1 + 𝜈𝜈1) sin2𝜙𝜙 + 𝐺𝐺2
−2cos2𝜙𝜙, 𝑎𝑎55 = 𝐺𝐺2

−1 + (𝐸𝐸1
−1(1 + 2 𝜈𝜈2) + 𝐸𝐸2

−1 − 𝐺𝐺2
−1) sin22𝜙𝜙, 

             𝑎𝑎66 = 2 𝐸𝐸1
−1(1 + 𝜈𝜈1) cos2𝜙𝜙 + 𝐺𝐺2

−1sin2𝜙𝜙, 𝑎𝑎12 = −𝐸𝐸1
−1𝜈𝜈1cos2𝜙𝜙 + 𝐺𝐺2

−1𝜈𝜈2 sin2𝜙𝜙,                               
             𝑎𝑎13 = −𝐸𝐸1

−1𝜈𝜈2 + 0.25(𝐸𝐸1
−1(1 + 2 𝜈𝜈2) + 𝐸𝐸2

−1 − 𝐺𝐺2
−1) sin22𝜙𝜙,                                              (2) 

             𝑎𝑎15 = [𝐸𝐸1
−1(1 + 𝜈𝜈2) cos2𝜙𝜙 − (𝐸𝐸2

−1 + 𝐸𝐸1
−1𝜈𝜈2) sin2𝜙𝜙 − 0.5 𝐺𝐺2

−1cos2𝜙𝜙] sin2𝜙𝜙, 
             𝑎𝑎23 = −𝐸𝐸1

−1𝜈𝜈1sin2𝜙𝜙 − 𝐸𝐸1
−1𝜈𝜈2cos2𝜙𝜙, 𝑎𝑎25 = −𝐸𝐸1

−1(𝜈𝜈1 − 𝜈𝜈2) sin2𝜙𝜙, 
             𝑎𝑎35 = [𝐸𝐸1

−1(1 + 𝜈𝜈2) sin2𝜙𝜙 − (𝐸𝐸2
−1 + 𝐸𝐸1

−1𝜈𝜈2) cos2𝜙𝜙 + 0.5 𝐺𝐺2
−1cos2𝜙𝜙] sin2𝜙𝜙, 

             𝑎𝑎46 = −0.5 (𝐺𝐺2
−1 − 2 𝐸𝐸1

−1(1 + 𝜈𝜈1))  sin2𝜙𝜙, 
and the remaining strain coefficients are zero. 

Here Е1 and Е2- are elastic moduli in the isotropy plane and perpendicular to it; 𝜈𝜈1 and 𝜈𝜈2- 
Poisson's coefficients in the isotropy plane and perpendicular to it during compression-expansion in 
this plane; 𝐺𝐺2- is shear modulus for planes normal to the isotropy plane. The values Е1,Е2, 𝜈𝜈1, 𝜈𝜈2are 
found from uniaxial compression experiments on rock samples parallel and perpendicular to the 
layering. First, the modulus of elasticity Е𝛼𝛼 in compression of the sample at an angle 𝛼𝛼 to the 
layering is determined from the formula: 

𝐸𝐸𝛼𝛼 = (𝐸𝐸1
−1cos4𝜙𝜙 + 0.25 (𝐺𝐺2

−1 − 2 𝐸𝐸1
−1𝜈𝜈2) sin22𝛼𝛼 + 𝐸𝐸2

−1sin4𝛼𝛼) −1,         
and then the shear modulus 𝐺𝐺2by the formula: 

𝐺𝐺2 = sin22𝛼𝛼 [0.25 (𝐸𝐸𝛼𝛼
−1 − 𝐸𝐸1

−1cos4𝛼𝛼 − 𝐸𝐸2
−1sin4𝛼𝛼 + 0.5 𝐸𝐸1

−1𝜈𝜈2 sin22𝛼𝛼)] −1. 
Determination of the stress components in an intact continuous rock massif, from now on 

referred to as the main ones, is hypothetical in nature. A.N. Dinnik's hypothesis about the absence 
of horizontal displacements in an intact thickness under the action of its own weight only, which is 
equivalent to the absence of expansion of the rock massif in the horizontal directions, is widely 
used. Then, taking 𝜎𝜎𝑧𝑧 = −𝛾𝛾𝛾𝛾and using (1), we obtain 

𝜎𝜎𝑥𝑥 = 𝜆𝜆𝑥𝑥 𝜎𝜎𝑧𝑧, 𝜎𝜎𝑦𝑦 = 𝜆𝜆𝑦𝑦 𝜎𝜎𝑧𝑧, 𝜏𝜏𝑥𝑥𝑥𝑥 = 𝜆𝜆𝑥𝑥𝑥𝑥 𝜎𝜎𝑧𝑧, 𝜏𝜏𝑦𝑦𝑦𝑦 = 𝜏𝜏𝑥𝑥𝑥𝑥 = 0. 
Here 𝜆𝜆𝑥𝑥, 𝜆𝜆𝑦𝑦- coefficients of lateral pressure across and along the isotropy plane; 𝛾𝛾, Н- 

volumetric weight of the rock mass and depth of the point in question. At horizontal layering 
(isotropy plane), when 𝜙𝜙 = 0, we have: 

                         𝜆𝜆𝑥𝑥 = 𝜆𝜆𝑦𝑦 = 𝜈𝜈2 (1 − 𝜈𝜈1)−1; 𝜆𝜆𝑥𝑥𝑥𝑥 = 0.                                                (3) 
For an isotropic medium (𝐸𝐸1 = 𝐸𝐸2 = 𝐸𝐸, 𝐺𝐺2 = 𝐺𝐺, 𝜈𝜈1 = 𝜈𝜈2 = 𝜈𝜈) we obtain the well-known A.N. 

Dinnik's coefficient: 

 - volumetric weight of the rock mass and depth of the point in question. At 
horizontal layering (isotropy plane), when 

      𝜀𝜀𝑧𝑧 = 𝑎𝑎13𝜎𝜎𝑥𝑥 + 𝑎𝑎23𝜎𝜎𝑦𝑦 + 𝑎𝑎33𝜎𝜎𝑧𝑧 + 𝑎𝑎35𝜏𝜏xz,           𝛾𝛾yz = 𝑎𝑎44 𝜏𝜏yz + 𝑎𝑎46 𝜏𝜏xy                                (1) 
           𝛾𝛾xy = 𝑎𝑎46𝜏𝜏yz + 𝑎𝑎66𝜏𝜏xy,                                      𝛾𝛾xz = 𝑎𝑎15𝜎𝜎𝑥𝑥 + 𝑎𝑎25𝜎𝜎𝑦𝑦 + 𝑎𝑎35𝜎𝜎𝑧𝑧 + 𝑎𝑎55𝜏𝜏xz 

 
 

а– general scheme; b - cross-section across the isotropic plane 
Fig. 1 - Sloped-layered rock massif 

             
where the strain coefficients 𝑎𝑎ij (𝑖𝑖, 𝑗𝑗 = 1 − 6) are equal: 

    𝑎𝑎11 = 𝐸𝐸1
−1cos4𝜙𝜙 + 0.25(𝐺𝐺2

−1 − 2𝜈𝜈2𝐸𝐸1
−1) sin22𝜙𝜙 + 𝐸𝐸2

−1sin4𝜙𝜙,    𝑎𝑎22 = 𝐸𝐸1
−1, 

    𝑎𝑎33 = 𝐸𝐸1
−1sin4𝜙𝜙 + 0.25(𝐺𝐺2

−1 − 2 𝜈𝜈2𝐸𝐸1
−1) sin22𝜙𝜙 + 𝐸𝐸2

−1cos4𝜙𝜙, 
    𝑎𝑎44 = 2 𝐸𝐸1

−1(1 + 𝜈𝜈1) sin2𝜙𝜙 + 𝐺𝐺2
−2cos2𝜙𝜙, 𝑎𝑎55 = 𝐺𝐺2

−1 + (𝐸𝐸1
−1(1 + 2 𝜈𝜈2) + 𝐸𝐸2

−1 − 𝐺𝐺2
−1) sin22𝜙𝜙, 

             𝑎𝑎66 = 2 𝐸𝐸1
−1(1 + 𝜈𝜈1) cos2𝜙𝜙 + 𝐺𝐺2

−1sin2𝜙𝜙, 𝑎𝑎12 = −𝐸𝐸1
−1𝜈𝜈1cos2𝜙𝜙 + 𝐺𝐺2

−1𝜈𝜈2 sin2𝜙𝜙,                               
             𝑎𝑎13 = −𝐸𝐸1

−1𝜈𝜈2 + 0.25(𝐸𝐸1
−1(1 + 2 𝜈𝜈2) + 𝐸𝐸2

−1 − 𝐺𝐺2
−1) sin22𝜙𝜙,                                              (2) 

             𝑎𝑎15 = [𝐸𝐸1
−1(1 + 𝜈𝜈2) cos2𝜙𝜙 − (𝐸𝐸2

−1 + 𝐸𝐸1
−1𝜈𝜈2) sin2𝜙𝜙 − 0.5 𝐺𝐺2

−1cos2𝜙𝜙] sin2𝜙𝜙, 
             𝑎𝑎23 = −𝐸𝐸1

−1𝜈𝜈1sin2𝜙𝜙 − 𝐸𝐸1
−1𝜈𝜈2cos2𝜙𝜙, 𝑎𝑎25 = −𝐸𝐸1

−1(𝜈𝜈1 − 𝜈𝜈2) sin2𝜙𝜙, 
             𝑎𝑎35 = [𝐸𝐸1

−1(1 + 𝜈𝜈2) sin2𝜙𝜙 − (𝐸𝐸2
−1 + 𝐸𝐸1

−1𝜈𝜈2) cos2𝜙𝜙 + 0.5 𝐺𝐺2
−1cos2𝜙𝜙] sin2𝜙𝜙, 

             𝑎𝑎46 = −0.5 (𝐺𝐺2
−1 − 2 𝐸𝐸1

−1(1 + 𝜈𝜈1))  sin2𝜙𝜙, 
and the remaining strain coefficients are zero. 

Here Е1 and Е2- are elastic moduli in the isotropy plane and perpendicular to it; 𝜈𝜈1 and 𝜈𝜈2- 
Poisson's coefficients in the isotropy plane and perpendicular to it during compression-expansion in 
this plane; 𝐺𝐺2- is shear modulus for planes normal to the isotropy plane. The values Е1,Е2, 𝜈𝜈1, 𝜈𝜈2are 
found from uniaxial compression experiments on rock samples parallel and perpendicular to the 
layering. First, the modulus of elasticity Е𝛼𝛼 in compression of the sample at an angle 𝛼𝛼 to the 
layering is determined from the formula: 

𝐸𝐸𝛼𝛼 = (𝐸𝐸1
−1cos4𝜙𝜙 + 0.25 (𝐺𝐺2

−1 − 2 𝐸𝐸1
−1𝜈𝜈2) sin22𝛼𝛼 + 𝐸𝐸2

−1sin4𝛼𝛼) −1,         
and then the shear modulus 𝐺𝐺2by the formula: 

𝐺𝐺2 = sin22𝛼𝛼 [0.25 (𝐸𝐸𝛼𝛼
−1 − 𝐸𝐸1

−1cos4𝛼𝛼 − 𝐸𝐸2
−1sin4𝛼𝛼 + 0.5 𝐸𝐸1

−1𝜈𝜈2 sin22𝛼𝛼)] −1. 
Determination of the stress components in an intact continuous rock massif, from now on 

referred to as the main ones, is hypothetical in nature. A.N. Dinnik's hypothesis about the absence 
of horizontal displacements in an intact thickness under the action of its own weight only, which is 
equivalent to the absence of expansion of the rock massif in the horizontal directions, is widely 
used. Then, taking 𝜎𝜎𝑧𝑧 = −𝛾𝛾𝛾𝛾and using (1), we obtain 

𝜎𝜎𝑥𝑥 = 𝜆𝜆𝑥𝑥 𝜎𝜎𝑧𝑧, 𝜎𝜎𝑦𝑦 = 𝜆𝜆𝑦𝑦 𝜎𝜎𝑧𝑧, 𝜏𝜏𝑥𝑥𝑥𝑥 = 𝜆𝜆𝑥𝑥𝑥𝑥 𝜎𝜎𝑧𝑧, 𝜏𝜏𝑦𝑦𝑦𝑦 = 𝜏𝜏𝑥𝑥𝑥𝑥 = 0. 
Here 𝜆𝜆𝑥𝑥, 𝜆𝜆𝑦𝑦- coefficients of lateral pressure across and along the isotropy plane; 𝛾𝛾, Н- 

volumetric weight of the rock mass and depth of the point in question. At horizontal layering 
(isotropy plane), when 𝜙𝜙 = 0, we have: 

                         𝜆𝜆𝑥𝑥 = 𝜆𝜆𝑦𝑦 = 𝜈𝜈2 (1 − 𝜈𝜈1)−1; 𝜆𝜆𝑥𝑥𝑥𝑥 = 0.                                                (3) 
For an isotropic medium (𝐸𝐸1 = 𝐸𝐸2 = 𝐸𝐸, 𝐺𝐺2 = 𝐺𝐺, 𝜈𝜈1 = 𝜈𝜈2 = 𝜈𝜈) we obtain the well-known A.N. 

Dinnik's coefficient: 

, we have:
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      𝜀𝜀𝑧𝑧 = 𝑎𝑎13𝜎𝜎𝑥𝑥 + 𝑎𝑎23𝜎𝜎𝑦𝑦 + 𝑎𝑎33𝜎𝜎𝑧𝑧 + 𝑎𝑎35𝜏𝜏xz,           𝛾𝛾yz = 𝑎𝑎44 𝜏𝜏yz + 𝑎𝑎46 𝜏𝜏xy                                (1) 
           𝛾𝛾xy = 𝑎𝑎46𝜏𝜏yz + 𝑎𝑎66𝜏𝜏xy,                                      𝛾𝛾xz = 𝑎𝑎15𝜎𝜎𝑥𝑥 + 𝑎𝑎25𝜎𝜎𝑦𝑦 + 𝑎𝑎35𝜎𝜎𝑧𝑧 + 𝑎𝑎55𝜏𝜏xz 
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where the strain coefficients 𝑎𝑎ij (𝑖𝑖, 𝑗𝑗 = 1 − 6) are equal: 
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             𝑎𝑎66 = 2 𝐸𝐸1
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−1(1 + 𝜈𝜈2) cos2𝜙𝜙 − (𝐸𝐸2
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             𝑎𝑎35 = [𝐸𝐸1
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−1cos2𝜙𝜙] sin2𝜙𝜙, 

             𝑎𝑎46 = −0.5 (𝐺𝐺2
−1 − 2 𝐸𝐸1

−1(1 + 𝜈𝜈1))  sin2𝜙𝜙, 
and the remaining strain coefficients are zero. 

Here Е1 and Е2- are elastic moduli in the isotropy plane and perpendicular to it; 𝜈𝜈1 and 𝜈𝜈2- 
Poisson's coefficients in the isotropy plane and perpendicular to it during compression-expansion in 
this plane; 𝐺𝐺2- is shear modulus for planes normal to the isotropy plane. The values Е1,Е2, 𝜈𝜈1, 𝜈𝜈2are 
found from uniaxial compression experiments on rock samples parallel and perpendicular to the 
layering. First, the modulus of elasticity Е𝛼𝛼 in compression of the sample at an angle 𝛼𝛼 to the 
layering is determined from the formula: 

𝐸𝐸𝛼𝛼 = (𝐸𝐸1
−1cos4𝜙𝜙 + 0.25 (𝐺𝐺2

−1 − 2 𝐸𝐸1
−1𝜈𝜈2) sin22𝛼𝛼 + 𝐸𝐸2
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and then the shear modulus 𝐺𝐺2by the formula: 

𝐺𝐺2 = sin22𝛼𝛼 [0.25 (𝐸𝐸𝛼𝛼
−1 − 𝐸𝐸1

−1cos4𝛼𝛼 − 𝐸𝐸2
−1sin4𝛼𝛼 + 0.5 𝐸𝐸1

−1𝜈𝜈2 sin22𝛼𝛼)] −1. 
Determination of the stress components in an intact continuous rock massif, from now on 

referred to as the main ones, is hypothetical in nature. A.N. Dinnik's hypothesis about the absence 
of horizontal displacements in an intact thickness under the action of its own weight only, which is 
equivalent to the absence of expansion of the rock massif in the horizontal directions, is widely 
used. Then, taking 𝜎𝜎𝑧𝑧 = −𝛾𝛾𝛾𝛾and using (1), we obtain 

𝜎𝜎𝑥𝑥 = 𝜆𝜆𝑥𝑥 𝜎𝜎𝑧𝑧, 𝜎𝜎𝑦𝑦 = 𝜆𝜆𝑦𝑦 𝜎𝜎𝑧𝑧, 𝜏𝜏𝑥𝑥𝑥𝑥 = 𝜆𝜆𝑥𝑥𝑥𝑥 𝜎𝜎𝑧𝑧, 𝜏𝜏𝑦𝑦𝑦𝑦 = 𝜏𝜏𝑥𝑥𝑥𝑥 = 0. 
Here 𝜆𝜆𝑥𝑥, 𝜆𝜆𝑦𝑦- coefficients of lateral pressure across and along the isotropy plane; 𝛾𝛾, Н- 

volumetric weight of the rock mass and depth of the point in question. At horizontal layering 
(isotropy plane), when 𝜙𝜙 = 0, we have: 

                         𝜆𝜆𝑥𝑥 = 𝜆𝜆𝑦𝑦 = 𝜈𝜈2 (1 − 𝜈𝜈1)−1; 𝜆𝜆𝑥𝑥𝑥𝑥 = 0.                                                (3) 
For an isotropic medium (𝐸𝐸1 = 𝐸𝐸2 = 𝐸𝐸, 𝐺𝐺2 = 𝐺𝐺, 𝜈𝜈1 = 𝜈𝜈2 = 𝜈𝜈) we obtain the well-known A.N. 

Dinnik's coefficient: 
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volumetric weight of the rock mass and depth of the point in question. At horizontal layering 
(isotropy plane), when 𝜙𝜙 = 0, we have: 
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For an isotropic medium (𝐸𝐸1 = 𝐸𝐸2 = 𝐸𝐸, 𝐺𝐺2 = 𝐺𝐺, 𝜈𝜈1 = 𝜈𝜈2 = 𝜈𝜈) we obtain the well-known A.N. 

Dinnik's coefficient: 
) we obtain the 

well-known A.N. Dinnik’s coefficient:

                         𝜆𝜆𝑥𝑥 = 𝜆𝜆𝑦𝑦 = 𝜈𝜈 (1 − 𝜈𝜈)−1; 𝜆𝜆𝑥𝑥𝑥𝑥 = 0.                                                    (4) 
For an incompressible medium at 𝜈𝜈 = 0.5 we come to a hydrostatic stress distribution 

                                              𝜆𝜆𝑥𝑥 = 𝜆𝜆𝑦𝑦 = 1, 𝜆𝜆𝑥𝑥𝑥𝑥 = 0.                                                 (5) 
Results and discussion. An unanchored deep underground mine working in a transversally 

isotropic rock massif arbitrarily oriented relative to the rock strike line is considered. First, the 
stress state of the transversally isotropic rock massif is found. The stress state of the undisturbed 
rock massif, in which no underground excavation has yet been carried out, is determined by its 
elastic properties, assuming that only vertical movements are possible according to the hypothesis 
of A.N. Dinnik. Then we studied the mechanical state of circular drifts and crosshairs caused by the 
anisotropic elasticity of the rock mass, as well as the influence of the angle of incidence of rocks on 
the distribution of stresses on the contour of loose drifts and crosshairs.   

It should be noted that the values of the modulus of elasticity allow us to estimate the degree of 
elastic anisotropy of the rock massif only qualitatively. For a complete analysis of such anisotropy 
of a rock massif, it is necessary to have values of the anisotropy parameters for the flat problem 
introduced by S.G. Lekhnitsky: 

         𝑘𝑘2 = (Е1 Е2⁄ )−𝜈𝜈2
2

1−𝜈𝜈1
2 ,    𝑛𝑛 = √2𝑘𝑘 + 𝑚𝑚,    где     𝑚𝑚 = (𝐸𝐸1 𝐺𝐺2⁄ )−2𝜈𝜈2(1+𝜈𝜈1)

1−𝜈𝜈1
2 .                       (6)  

In other words, they can be found using the values of all five elastic constants of the rock mass: E1 
and E2 - modulus of elasticity in the isotropy plane and perpendicular to it; ν1 and ν2 - Poisson's ratio 
in the isotropy plane and perpendicular to it (in tension-compression in this plane); G2 - shear 
modulus for planes normal to the isotropy plane. 

Values E1, E2, ν1, ν2 are determined by compression experiments on rock samples parallel and 
perpendicular to the layering, and G2 is calculated by the formula 

𝐺𝐺2 = ( 4
Е𝜑𝜑=450

− 1−2𝜈𝜈2
Е1

− 1
Е2

)
−1

,                                                  (7) 

where Е𝜑𝜑=450 - is the value of the modulus of elasticity in compression of the rock sample in the 
direction which is 450 with the plane of isotropy (stratification).   

In the generalized planar deformation (the crosshair stress problem), in addition to the 
parameters k and n we need the parameter l defined by the expression 

 
                                                         𝑙𝑙 = √𝐸𝐸1 2⁄ (1 + 𝜈𝜈1)𝐺𝐺2.                                                         (8) 
 
The degree of anisotropy is estimated by the deviation of the values of these parameters from 

the values for isotropic medium: k=1, n=2, l=1. 
Evaluation of the stability of mine workings is given taking into account the influence of 

technological irregularities of the rock contour. The analysis is based on multivariate numerical 
experiments using formulas 1-8. For the numerical analysis, the authors developed an algorithm and 
a package of applied programs for the problem of the stress state of underground structures (Guang-
Chuan Liang, et. al., 2016), (Mandal, et. al., 2018; Jianguo Zhang, et. al., 2019; Liu Hao, et. al., 
2020; Pleshko, et. al., 2021). 

Calculations were performed using a set of elastic parameters of siltstone as an example: 
k=1,43; n=3,32; l=1,78. The calculations are performed for the cases when the stress distribution in 
the intact massif: 

1) nonhydrostatic (according to A.N. Dinnik), i.e. λх= λх(φ), λу= λу(φ), λ𝝉𝝉=0; 
2) hydrostatic, i.e. λх= λу=1, λ𝝉𝝉=0. 
Values of lateral pressure coefficients for rock massifs with drifts and crosshairs are 

summarized in Table 1.  
 

Table 1 - Values of side pressure coefficients 
φ, degree 0 10 20 30 40 50 60 70 80 90 

λх 0.337 0.398 0.549 0.692 0.705 0.578 0.404 0.258 0.169 0.139 
λу 0.337 0.364 0.436 0.520 0.566 0.556 0.517 0.476 0.456 0.441 
λ𝝉𝝉 0 -0.031 -0.039 0.104 0.239 0.314 0.300 0.224 0.118 0 

. 				    (4)
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Calculations were performed using a set of elastic parameters of siltstone as an example: 
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The degree of anisotropy is estimated by the deviation of the values of these 
parameters from the values for isotropic medium: k=1, n=2, l=1.

Evaluation of the stability of mine workings is given taking into account the 
influence of technological irregularities of the rock contour. The analysis is based 
on multivariate numerical experiments using formulas 1-8. For the numerical 
analysis, the authors developed an algorithm and a package of applied programs 
for the problem of the stress state of underground structures (Guang-Chuan Liang, 
et. al., 2016), (Mandal, et. al., 2018; Jianguo Zhang, et. al., 2019; Liu Hao, et. al., 
2020; Pleshko, et. al., 2021).

Calculations were performed using a set of elastic parameters of siltstone as an 
example: k=1,43; n=3,32; l=1,78. The calculations are performed for the cases 
when the stress distribution in the intact massif:

1)	 nonhydrostatic (according to A.N. Dinnik), i.e. λх= λх(φ), λу= λу(φ), λτ=0;
2)	 hydrostatic, i.e. λх= λу=1, λτ=0.
Values of lateral pressure coefficients for rock massifs with drifts and crosshairs 

are summarized in Table 1. 

Table 1 - Values of side pressure coefficients
φ, degree 0 10 20 30 40 50 60 70 80 90

λх 0.337 0.398 0.549 0.692 0.705 0.578 0.404 0.258 0.169 0.139

λу 0.337 0.364 0.436 0.520 0.566 0.556 0.517 0.476 0.456 0.441

λ𝝉 0 -0.031 -0.039 0.104 0.239 0.314 0.300 0.224 0.118 0

The initial stability of the mine workings of the drift and crosshair type has 
been studied. On the contour of loose circular workings σr=τrɵ=0. Circumferential 
stresses σɵ for the drift are calculated in points with coordinates ɵ from 0 to 1800, 
and for the contour of the crosshair, whose vertical and horizontal axes are axes of 
symmetry, - only in one quadrant because of symmetry. The angle of incidence of 
rocks φ varies from 0 to 900.

Based on the developed proprietary algorithms and stable numerical analysis 
schemes combined with the finite element method, multivariate numerical 
experiments were carried out to study the stress state of the circular mine workings 
of the drift and crosshair type (Solonenko, et al., 2017; Makhmetova, et al., 2019; 
Solonenko, et al., 2022). The stresses on the drift’s contour changed with the 
increase of rock dip angle and underwent not only quantitative but also qualitative 
changes. The results of numerical experiments on the law of stress distribution 
along the contour of the circular drift depending on the angle of incidence of rocks 
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are shown in Table 2. The corresponding diagrams of circumferential stresses 
σɵ, built on the contour of the drift type excavation, are shown in Fig. 2a,b. The 
stresses are shown in fractions of γH both for nonhydrostatic λх= λх(φ), λу= λу(φ) 
and hydrostatic λх= λу=1. With a steep fall of rocks, the distribution of these stresses 
becomes inhomogeneous: tensile stresses appear in the top and bottom of the 
excavation. The epiures have symmetry axes for horizontal and vertical bedding, 
with the maximum stresses at the lateral points and the minimum ones at the top. At 
λх=1, the maximum stresses, remaining constant in value at any inclination angle 
of the layers, are concentrated at the point of the rock contour along the normal to 
the layering plane. The track is in favorable conditions at medium angles φ=300-
500, when the circumferential stresses are distributed relatively evenly and least 
intensely.

Table 2 - Stress distribution along the contour of the circular drift

ɵ, degree
σɵ/γН (drift)

φ=300 φ=450 φ=600

λх= λх(φ) λх=1 λх= λх(φ) λх=1 λх= λх(φ) λх=1
0 1.967 1.706 1.750 1.420 2.152 1.610
10 2.288 2.077 1.833 1.572 1.861 1.403
20 2.582 2.493 2.025 1.877 1.731 1.476
30 2.583 2.692 2.250 2.292 1.700 1.706
40 2.183 2.493 2.319 2.638 1.698 2.077
50 1.633 2.077 2.045 2.638 1.605 2.493
60 1.183 1.706 1.542 2.292 1.297 2.692
70 0.890 1.476 1.079 1.877 0.834 2.493
80 0.734 1.403 0.767 1.572 0.430 2.077
90 0.712 1.510 0.599 1.420 0.184 1.706
100 0.885 1.875 0.562 1.431 0.074 1.476
110 1.402 2.570 0.699 1.653 0.076 1.403
120 2.126 3.079 1.165 2.187 0.222 1.510
130 2.233 2.570 2.101 2.926 0.657 1.875
140 1.926 1.875 2.739 2.926 1.688 2.570
150 1.710 1.510 2.453 2.187 3.084 3.079
160 1.657 1.403 2.035 1.653 3.295 2.570
170 1.746 1.476 1.805 1.431 2.671 1.875
180 1.967 1.706 1.750 1.420 2.152 1.510
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а - when λх= λх(φ), б – when λу=1; 1- φ=0, 2- φ=300, 3- φ=600, 4- φ=900

Fig. 2 - Circumferential stress diagrams on the contour of the circular profile drift

The diagrams of circumferential stresses σɵ, built on the contour of the crosshair 
type excavation, are shown in Figure 3a,b. Stresses on the crosshair, on the contrary, 
in all cases are symmetrical relative to the vertical and horizontal axes and are 
homogeneous everywhere - compressive. The minimum stresses are concentrated 
strictly in the middle of the roof, the maximum - in the side points of the crosshair, 
reaching the highest and lowest values in the horizontal bedding of rocks. The 
results of numerical experiments on the law of distribution of stresses along the 
contour of the circular crosshair, depending on the angle of incidence of rocks are 
shown in Table 3. Naturally, in this case, the stress state of the drift and the crosshair 
coincide. When λу=1, the maximum and minimum stresses at the contour of the 
crosshair tend to the same value as the rock dip angle increases. The dependence of 
circumferential stresses on lateral pressure coefficients is shown in Figure 4 for the 
drift (a) and the crosshair (b), where the solid lines refer to the top of the excavation 
and the dotted ones to its sides. Curves 4 at φ = 900 for the crosshair coincide with 
the results for isotropic massif



230

N E W S  of  the  National  Academy  of  Sciences  of  the  Republic  of   Kazakhstan

Table 3 - Stress distribution along the contour of the circular crosshair

φ, 
degree

Crosshair
λу=0.2 λу= λу(φ) λу=1

σɵ.max/γН 
при ɵ=00

σɵ.min/γН 
при ɵ=900

σɵ.max/γН 
при ɵ=00

σɵ.min/γН 
при ɵ=900

σɵ.max/γН 
при ɵ=900

σɵ.min/γН при 
ɵ=450

0 3.206 -0.631 3.118 0.006 3.079 1.404
10 3.162 -0.653 3.058 0.080 2.927 1.443
20 3.051 -0.678 2.902 0.302 2.652 1.537
30 2.915 -0.669 2.711 0.561 2.412 1.655
40 2.800 -0.630 2.551 0.680 2.256 1.780
50 2.728 -0.585 2.456 0.624 1.132 1.884
60 2.724 -0.513 2.453 0.454 2.047 1.943
70 1.749 -0.457 2.495 0.395 2.012 1.989
80 2.784 -0.416 2.540 0.338 2.001 1.999
90 2.800 -0.400 2.559 0.322 2.000 2.000

а - when λу= λу(φ), б – when λу=1; 1- φ=0, 2- φ=300, 3- φ=600, 4- φ=900.
Fig. 3 - Circumferential stress diagrams on the contour of the circular profile crosshair
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1- φ=0, 2- φ=300, 3- φ=600, 4- φ=900. 
The solid line refers to the roof, the solid line with a circle refers to the sides.

Fig. 4 - Diagrams of the dependence of circumferential stresses on the contour of the drift (a) 
and the crosshair (b) on the coefficient of lateral pressure

Analysis of the numerical results shows:
1. For the drift with a change in the angle of rock dip, the minimum stresses are 

confined to the top of the drift, and the area of maximum stresses visibly changes 
its position on the contour of the drift from the direction along the layering rocks to 
the direction across their layering;

2.  The crawlspace is in relatively favorable conditions not only at medium 
angles, but also at a steep bedding of rocks. At any rock dip angle, the initial elastic 
stability conditions are comparatively more favorable for the croslag than for the 
drift.

Conclusions: In general, for the drift at λх= λх(φ), with a change in the rock 
dip angle, the minimum stresses are confined to the top of the drift, and the area 
of maximum stresses visibly changes its position on the drift contour from the 
direction along the rock overlay to the direction crossing their overlay. The initial 
elastic stability of the drift deteriorates with a steep fall of rocks, when stresses in 
the lateral points reach the greatest value, and tensile stresses appear in the roof.

The crosshair is in relatively favorable conditions not only at medium angles φ, 
but also at steep bedding of rocks. In a rock massif with vertical layers, the stresses 
around the crosshair will be the same as in an isotropic massif. The above data from 
theoretical studies and multivariant numerical experiments show that, at any angle 
of rock incidence, the initial elastic stability conditions are relatively favorable for 
the crosshair rather than for the drift.

A detailed analysis of the numerical results shows sufficient completeness of the 
assumptions of this study and the reliability of its results as a theoretical basis for 
solving various problems of rock pressure when driving horizontal mine workings, 
the longitudinal axes of which are arbitrarily 
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